
Finding the disjointness of stabilizer codes is NP-complete

John Bostanci1 and Aleksander Kubica2, 1, 3, 4

1Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

3AWS Center for Quantum Computing, Pasadena, CA 91125, USA
4California Institute of Technology, Pasadena, CA 91125, USA

The disjointness of a stabilizer code is a quantity used to constrain the level of the logical Clifford
hierarchy attainable by transversal gates and constant-depth quantum circuits. We show that for
any positive integer constant c, the problem of calculating the c-disjointness, or even approximating
it to within a constant multiplicative factor, is NP-complete. We provide bounds on the disjointness
for various code families, including the CSS codes, concatenated codes and hypergraph product
codes. We also describe numerical methods of finding the disjointness, which can be readily used
to rule out the existence of any transversal gate implementing some non-Clifford logical operation
in small stabilizer codes. Our results indicate that finding fault-tolerant logical gates for generic
quantum error-correcting codes is a computationally challenging task.

Designing fault-tolerant schemes is an essential step to-
ward scalable universal quantum computation [1–4]. To
protect quantum information from the detrimental effects
of noise one typically encodes it into an quantum error-
correcting code. In addition to reliably storing quantum
information, one also seeks to perform fault-tolerant log-
ical operations on the encoded information.

One of the simplest ways to realize fault-tolerant log-
ical operations is via transversal gates, which act inde-
pendently on individual physical qubits and thus do not
spread errors in an uncontrollable way. Recently, many
works have been devoted to transversal gates implement-
ing non-Clifford logical operations in topological quan-
tum codes [5–11] and the consequent universal quantum
computation schemes [12–17]. Transversal gates also
prove useful for magic state distillation [18–20], as they
form the backbone of many distillation protocols; see
Ref. [21] and the references therein.

Logical operations implemented via transversal gates
are somewhat limited. Namely, the computational uni-
versality of transversal gates is incommensurate with the
capability of the underlying code to correct errors, as ex-
emplified by the Eastin-Knill theorem [22, 23], and its
approximate versions [24–26]. More generally, bounded-
spread logical operators, which propagate errors in a be-
nign way and include constant-depth quantum circuits
and locality-preserving operators, are also computation-
ally limited [27–31].

Although systematic approaches to finding transversal
logical gates for generic quantum error-correcting codes
are not known, for stabilizer codes [32] we can rule out
the possibility of implementing certain logical operations.
Namely, if M is the level of the logical Clifford hierar-
chy [33] attainable by transversal logical gates, then the
following upper bound holds

M ≤ blog∆ (d↑/d↓)c+ 2, (1)

given the min-distance d↓ > 1, max-distance d↑ and dis-
jointness ∆ of the stabilizer code [30]. The disjoint-
ness, roughly speaking, captures the maximal number
of mostly non-overlapping representatives of any given

non-trivial logical Pauli operator. Until now, however,
the problem of finding the disjointness as well as its com-
putational hardness have not been explored.

In our work we focus on the problem of finding the
disjointness of stabilizer codes, which serves as a proxy
to understanding what are the admissible fault-tolerant
logical gates. First, in Section II we show that for any
positive integer c it is NP-complete to calculate the c-
disjointness, as well as to approximate it to within any
constant multiplicative factor. Our result thus indicates
that finding fault-tolerant logical gates that can be imple-
mented with generic quantum error-correcting codes is a
computationally challenging task. Then, in Section III
we discuss numerical methods of finding the disjointness,
which we illustrate with the example of the [[14, 3, 3]] sta-
bilizer code [34]. We also provide a strengthening of the
bound in Eq. (1), which subsequently rules out the exis-
tence of any transversal logical non-Clifford gate in the
aforementioned [[14, 3, 3]] stabilizer code. Lastly, in Sec-
tion IV we provide bounds on the disjointness for various
code families, including the CSS codes [35, 36], concate-
nated codes [37] and hypergraph product codes [38].

I. PRELIMINARIES

In this section, we briefly discuss basic constructions
of stabilizer codes, as well as the notions of code distance
and disjointness. We also comment on certain graph-
theory problems and their computational complexity.

A. Stabilizer code constructions

Stabilizer codes are an important class of quantum
error-correcting codes. A stabilizer code is defined by
its stabilizer group S, i.e., an Abelian subgroup of the
Pauli group that does not contain −I. In what follows
we identify the stabilizer code with its stabilizer group.
The code space of the stabilizer code S is the simultane-
ous (+1)-eigenspace of all of the stabilizer operators. We

ar
X

iv
:2

10
8.

04
73

8v
1 

 [
qu

an
t-

ph
] 

 1
0 

A
ug

 2
02

1



2

denote by [[n, k, d]] a stabilizer code that encodes k logi-
cal qubits into n physical qubits and has code distance d.
To specify the [[n, k, d]] stabilizer code, we can provide a
binary matrix of size (n−k)×2n, whose rows correspond
to independent stabilizer generators of S. For concrete-
ness, we identify a bit string (b1, . . . , b2n) ∈ {0, 1}2n with

the following Pauli operator
⊗n

i=1X
bi
i Z

bi+n

i , where Pi
denotes a Pauli P ∈ {X,Z} operator acting on qubit
i ∈ [n] = {1, . . . , n}. We say that an operator is of X-
or Z-type iff it is a tensor product of either Pauli X or
Pauli Z operators (and the identity operators).

For any stabilizer code, logical Pauli operators, which
are the elements of the the normalizer of the stabilizer
group in the Pauli group, can always be implemented as
tensor products of single-qubit Pauli operators. We write
L to represent a logical Pauli operator itself, as well as
the set of its equivalent representatives. Also, we write L
to denote the set of all non-trivial logical Pauli operators.

CSS codes.—A stabilizer code is a CSS code iff there
exists a choice of stabilizer generators such that every
generator is either a Pauli X- or Z-type operator. Given
a CSS code with code parameters [[n, k, d]], we can always
choose its logical Pauli operators in a way that for every
i ∈ [k] the logical Pauli Xi and Zi operators are imple-
mented via Pauli X- and Z-type operators, respectively.
We refer to such a set of logical operators {Xi, Zi}i∈[k]

as a standard logical basis. Then, for every logical Pauli
operator L we can find its decomposition in a standard

logical basis, i.e., L = L
X
L
Z

, where L
X

and L
Z

are X-
and Z-type logical Pauli operators, respectively.

Concatenated stabilizer codes.—Given two stabi-
lizer codes S1 and S2 with parameters [[n1, k1, d1]] and
[[n2, 1, d2]], respectively, we can concatenate them to ob-
tain a new stabilizer code S1 C S2. To construct the
concatenated code S1 C S2, we first encode the logical
information into the stabilizer code S1, then we encode
each and every qubit of the stabilizer code S1 into the sta-
bilizer code S2. The concatenated code S1CS2 is a stabi-
lizer code with parameters [[n1n2, k1, d]], where d ≥ d1d2.
Hypergraph product codes.—Given two full-rank

binary matrices H1 and H2 of size m1×n1 and m2×n2,
respectively, the corresponding hypergraph product code
is specified by the following binary matrix(

H1 ⊗ Im2
Im1
⊗H2 0m1m2,n1m2+n2m1

0n1n2,n1m2+n2m1 In1 ⊗HT
2 HT

1 ⊗ In2

)
, (2)

where HT
∗ denotes the transpose of H∗, 0a,b and Ia are

the zero matrix and the identity matrix of size a× b and
a× a, respectively. Note that hypergraph product codes
are CSS codes.

B. Distance and disjointness

Let L ∈ L be any non-trivial logical Pauli operator for
the stabilizer code S. Following Ref. [30], we define the
distance d(L) to be the size of the support of the smallest

representative of L, i.e.,

d(L) = min
L∈L
| suppL|, (3)

and introduce the notions of the min-distance and max-
distance as follows

d↓ = min
L∈L

d(L), d↑ = max
L∈L

d(L). (4)

Note that the min-distance is the same as the standard
stabilizer code distance.

Let A ⊆ L be a subset of representatives of L or, more
generally, a multiset that allows for multiple instances
for each of the representatives of L. We say that A is
a c-disjoint collection of representatives of L, where c is
a positive integer, iff for every qubit there are at most
c elements of A that are supported on that qubit. We
then define the c-disjointness ∆c

(
L
)

to be the size of the

largest c-disjoint collection for L divided by c, i.e.,

∆c(L) = c−1 max
A⊆L
{|A| : at most c elements L ∈ A (5)

are supported on any qubit}.(6)

Subsequently, the disjointness ∆(S) of the stabilizer code
S is defined as follows

∆(S) = sup
c≥1

min
L∈L

∆c(L). (7)

Note that the disjointness defined here, which allows rep-
resentatives of L to be selected multiple times, is greater
or equal to the disjointness defined in Ref. [30]. Thus, by
using our definition in Eq. (1) we may obtain a tighter
bound on the level of the logical Clifford hierarchy at-
tainable by transversal logical gates. At the same time,
it is not obvious that the supremum in Eq. (7) can be
admitted for some finite positive integer c. We establish
this fact in Theorem 5 and Proposition 6.

Finally, for any positive integer c we introduce the fol-
lowing decision problem based on the c-disjointness.

c-DISJOINTNESS
Input: A full-rank binary matrix of size
(n− k)× 2n specifying a stabilizer code S, a
string of 2n bits representing a logical Pauli
operator L and a positive integer a.
Question: Is the size of the largest c-disjoint
collection of representatives of L greater or
equal to a, i.e., c∆c

(
L
)
≥ a?

C. Computational complexity and graph theory

NP is the complexity class of problems that can be
solved in polynomial time using a non-deterministic Tur-
ing machine, which can perform multiple operations at
the same time in parallel at every time step, and accepts
if any one of the parallel operations leads to an accepting



3

(a) (b) (c)

FIG. 1. (a) A graph G = (V,E) can be used to define a CSS stabilizer code SG
c . In (b) and (c), we illustrate the construction

for c = 1 and c = 2, respectively. Qubits (black and red dots) are placed at vertices and on edges of the graph G. We depict

in red the support of the representative X(v) of the logical Pauli operator L
G
c that is associated with the vertex v ∈ V .

state. A problem is NP-hard if every problem in NP can
be reduced to it in polynomial time, and a problem is
NP-complete if it is both NP-hard and in NP.

Let G = (V,E) be a graph with the sets of vertices V
and edges E. We say that a subset of vertices V ′ ⊆ V
is an independent set for the graph G iff no two ver-
tices in V ′ are joined by an edge in E. Moreover, we say
that a collection A comprising subsets of the vertices of
G is an independent collection for G iff any two differ-
ent A,A′ ∈ A are disjoint and no two vertices belonging
to, respectively, A and A′ are joined by an edge in E.
Note that an independent set is a special case of an in-
dependent collection. We denote the size of a maximum
independent set for G by α(G) and refer to it as the in-
dependence number of G. Then, the following decision
problem is NP-complete [39].

INDEPENDENT SET
Input: A graph G = (V,E) and a positive
integer a.
Question: Is the independence number of G
greater or equal to a, i.e., α(G) ≥ a?

Furthermore, for generic graphs and a positive real num-
ber ε the problem of approximating α(G) up to a mul-
tiplicative factor of |V |1−ε is NP-hard [40, 41]. We use
this result in our reduction in the following section.

II. HARDNESS OF FINDING AND
APPROXIMATING THE c-DISJOINTNESS

We start this section by constructing a CSS stabilizer

code SGc and a logical Pauli operator L
G

c for any finite
graph G and positive integer c. Then, we show that the c-

disjointness ∆c

(
L
G

c

)
can be related to the independence

number α(G) of the graph G. This, in turn, allows us to
prove our main theorem by reducing the problem of find-
ing the maximum independent set for G to the problem

of finding the c-disjointness ∆c

(
L
G

c

)
.

A. Constructing the CSS stabilizer code

Let G = (V,E) be a graph and c be a positive integer
constant. To define a CSS stabilizer code SGc associated

with the graph G, we first place
( |V |
c−1

)
qubits on every

vertex v ∈ V and on every edge e ∈ E; see Fig. 1 for an
illustrative example. We label each qubit by a pair (v, ν)
or (e, ν), where ν ⊆ [|V |] is a subset of c − 1 integers
from [|V |] = {1, . . . , |V |}. Additionally, we place one
or two qubits at each vertex v depending on whether( |V |
c−1

)
(deg v + 1) is odd or even respectively, where deg v

denotes the degree of v. We label those additional qubits
by a pair (v, i), where i ∈ [2]. We denote by Pq a Pauli
operator P = X,Z supported on qubit with label q. We
denote by Q(v) and Q(e) all the qubits placed at the
vertex v and on the edge e, i.e., all the qubits with labels
(v, ∗) and (e, ∗), respectively. We also denote by Q the
set of all the qubits, i.e.,

Q =
⋃
v∈V

Q(v) ∪
⋃
e∈E

Q(e). (8)

The stabilizer group SGc associated with G and c is

SGc =

〈
X(u)X(v),

∏
q∈Q

Zq

∣∣∣∣ u, v ∈ V〉, (9)

where X(v) denotes a Pauli X operator associated with
a vertex v ∈ V , which we define as follows

X(v) =
∏

q∈Q(v)

Xq

∏
e3v

( ∏
q∈Q(e)

Xq

)
. (10)

Note that for any v ∈ V the Pauli X-type operator X(v)
is supported on the even number of qubits. Thus, X(v)
and

∏
q∈Q Zq commute and SGc is an Abelian subgroup

of the Pauli group satisfying −I 6∈ SGc . Moreover, for any
u, v ∈ V the Pauli X operators X(u) and X(v) are the
representatives of the same non-trivial logical Pauli oper-

ator, which we denote by L
G

c . The last statement follows
from the fact that X(u) and X(v) commute with the all
stabilizer operators, are not contained in the stabilizer
group SGc , and their product forms a stabilizer operator



4

X(u)X(v). For convenience, for any subset of vertices
A ⊆ V we define

X(A) =
∏
v∈A

X(v). (11)

Note that if |A| ≡ 0 mod 2, then X(A) is a stabilizer op-
erator; otherwise, X(A) is a representative of the logical

Pauli operator L
G

c .
We remark that if the graph G has at least c + 2 ver-

tices, i.e., |V | ≥ c + 2, then the stabilizer code SGc as-
sociated with G and c is error-detecting, i.e., its min-
distance satisfies d↓ > 1. This, in turn, implies that the
disjointness of SGc is greater than one, i.e., ∆

(
SGc
)
> 1;

see Lemma 2(ii) in Ref. [30]. To establish the claim
that d↓ > 1, it suffices to check that every single-qubit
Pauli operator anticommutes with some stabilizer oper-
ator from SGc . Since the stabilizer operator

∏
q∈Q Zq

is supported on every qubit, any single-qubit Pauli X
or Y operator anticommutes with it. For any vertex
v ∈ V a Pauli Z operator on qubit (v, i) or (v, ν) an-
ticommutes with a stabilizer operator X(u)X(v) for any
vertex u ∈ V \ {v} or u ∈ V \ ({v} ∪ ν), respectively.
Lastly, for any edge e ∈ E a Pauli Z operator on qubit
(e, ν) anticommutes with a stabilizer operator X(u)X(v)
for any vertex u ∈ V \ ({w,w′}∪ ν), where w,w′ ∈ V are
two vertices incident to e. Note that we use |V | ≥ c + 2
to guarantee that the set V \ ({w,w′} ∪ ν) is non-empty.

B. Relating the c-disjointness to the independence
number

Let SGc and L
G

c be a stabilizer code and a logical Pauli
operator, which are associated with the graph G = (V,E)
and the positive integer c. We abuse terminology and say
that a collection A comprising subsets of the vertices of
G is c-disjoint iff {X(A) | A ∈ A} is a c-disjoint collection

for the logical operator L
G

c of the stabilizer code SGc . We
refer to X(A) as a representative from A. We remark
that A is allowed to be a multiset. In what follows, we
establish three technical lemmas.

Lemma 1. Let G = (V,E) be a graph, V ′ ⊆ V be an
independent set and c be a positive integer. Then, a col-
lection A = {{v} | v ∈ V ′} is c-disjoint. Moreover, if
|V ′|(c+ 1) ≡ 1 mod 2, then A ∪ {V ′} is c-disjoint, too.

Proof. If c = 1, then |V ′|(c + 1) ≡ 0 mod 2 and one
can straightforwardly show that A is c-disjoint. In what
follows we assume that c ≥ 2. Let v ∈ V be a vertex, e ∈
E be an edge incident to two vertices w,w′ ∈ V , ν ⊂ V
be a subset of c−1 vertices and i ∈ [2]. First note that any
qubit (v, i) supports one or zero representatives from A,
depending on whether v belongs to V ′ or not. Let u ∈ V ′
be a vertex and X(u) be a corresponding representative

of L
G

c . If X(u) is supported on the qubit (v, ν), then
u ∈ (ν ∪ {v}) ∩ V ′. Thus, the qubit (v, ν) supports at
most |ν|+ 1 = c representatives from A. Similarly, X(u)

is supported on qubit (e, ν), then u ∈ (ν ∪ {w,w′})∩ V ′.
Since V ′ is an independent set, at most one of w and
w′ can belong to V ′. We then conclude that qubit (e, ν)
supports at most |ν| + 1 = c representatives from A.
Thus, A is c-disjont.

Now, assume that |V ′|(c+1) ≡ 1 mod 2. Then, X(V ′)

is a representative of L
G

c . It remains to show that no
qubit supports more than c representatives fromA∪{V ′}.
Since A is c-disjoint, thus a potential problem may only
arise for qubits which already support c representatives
from A. This, however, cannot happen for any qubit
(v, i), as c ≥ 2. If the qubit (v, ν) supports c representa-
tives from A, then ν ∪ {v} ⊆ V ′, and subsequently the
qubit (v, ν) does not support X(V ′), as |ν ∪ {v}| ≡ 0
mod 2. Similarly, if the qubit (e, ν) supports c repre-
sentatives from A, then it does not support X(V ′). We
conclude that A ∪ {V ′} is c-disjoint.

Lemma 2. Let G = (V,E) be a graph and c be a positive
integer. Let A be a collection of subsets of the vertices
of G that is c-disjoint and satisfies |A| ≥ 9c3/2. Then,
there exists an independent collection A′ ⊆ A, such that
|A′| ≥ |A| − 3c(c− 1).

Proof. If c = 1, then one can straightforwardly show that
A is an independent collection and, subsequently, one can
set A′ = A. In what follows we assume that c ≥ 2 and
provide an explicit construction of A′.

We start by finding the subsets of vertices
L1, . . . , L3(c−1) ∈ A and vertices v1, . . . , v3(c−1),
such that vi ∈ Li and vi 6∈ Lj for any two different
i, j ∈ [3(c− 1)]. Let A1 = A. For i = 1, . . . , 3(c− 1) one
proceeds inductively to find Li and vi. Namely,

1. choose Li to be the smallest subset of vertices in
Ai, i.e., Li = arg minL∈Ai

|L|,

2. choose vi to be any vertex in Li \
⋃i−1
j=1 Li,

3. define A′i to be the collection of the elements of Ai
that do not contain vi, i.e., A′i = {L ∈ Ai | L 63 vi},

4. define Ai+1 be the collection of the elements of A′i
that are not fully contained within

⋃i
j=1 Lj , i.e.,

Ai+1 = {L ∈ A′i | L \
⋃i
j=1 Lj 6= ∅}.

It suffices to show that |Ai| ≥ 1 for any i ∈ [3(c− 1)], as
this would imply that Li and vi can be found in steps 1
and 2.

By construction, we have the following chain of inclu-
sions Ai ⊇ A′i ⊇ Ai+1. We also have

|Ai+1| ≥ |A′i| − ic ≥ |Ai| − (i+ 1)c. (12)

To show Eq. (12), first note that for every L ∈ A con-
taining the vertex vi, the corresponding operator X(L)
is supported on qubit (vi, 1). Since A is c-disjoint, there
are at most c elements of A that include vi. Thus,



5

we obtain |A′i| ≥ |Ai| − c. By construction, we have
|L1| ≤ . . . ≤ |Li|, which leads to∣∣∣∣ i⋃

j=1

Lj

∣∣∣∣ ≤ i∑
j=1

|Lj | ≤ i|Li|. (13)

This, in turn, allows us to upper bound the number of

elements of A′i that are contained in
⋃i
j=1 Li. By defini-

tion of Li in step 1, for any L ∈ A′i we have |L| ≥ |Li|.
Since A is c-disjoint, so is A′i and we conclude that there
are at most

c

∣∣∣∣ i⋃
j=1

Lj

∣∣∣∣/|Li| ≤ ic (14)

elements of A′i that are contained in
⋃i
j=1 Li. This leads

to |Ai+1| ≥ |A′i|− ic, which, in turn, establishes Eq. (12).
By recursively using Eq. (12) we obtain

|Ai| ≥ |A1| − (i(i+ 1)/2− 1)c (15)

≥ 9c3/2− (9c2 − 15c+ 4)c/2 > 1 (16)

for any i ∈ [3(c− 1)], where the last inequality holds for
any positive integer c.

Now, let us consider

A′ = {L ∈ A | ∀i ∈ [3(c− 1)] : vi 6∈ L}. (17)

Since A is c-disjoint, we obtain |A′| ≥ |A| − 3c(c − 1).
To show that A′ is an independent collection, we assume
the contrapositive. Thus, there exist L,L′ ∈ A′, such
that either (i) L and L′ overlap and v ∈ L ∩ L′ is the
shared vertex, or (ii) L and L′ are disjoint, and u ∈ L
and w ∈ L′ are two vertices incident to the same edge
e ∈ E. Let us assume that the proposition (i) holds and

µ = {i ∈ [3(c− 1)] | v ∈ Li}. (18)

Note that |µ| ≤ c− 2; otherwise, qubit (v, 1) would sup-
port at least c+ 1 representatives corresponding to L, L′

and Li for i ∈ µ. Thus, we can find a subset of indices
ν ⊂ [3(c−1)]\µ of cardinality c−1, such that v 6∈ Li for
i ∈ ν. This leads to a contradiction, as the qubit (v, ν)
supports c+1 representatives corresponding to L, L′ and
Li for i ∈ ν. Now, let us assume that the proposition (ii)
holds and

µ = {i ∈ [3(c− 1)] | {u,w} ∩ Li 6= ∅}. (19)

Note that |µ| ≤ 2c−4; otherwise, one of the qubits (u, 1)
and (w, 1) would support at least c + 1 representatives
among the ones that correspond to L, L′ and Li for i ∈ µ.
Thus, we can find a subset of c−1 indices ν ⊂ [3(c−1)]\µ,
such that u,w 6∈ Li for i ∈ ν. This leads to a contradic-
tion, as the qubit (e, ν) supports c + 1 representatives
corresponding to L, L′ and Li for i ∈ ν.

Lemma 3. Let G = (V,E) be a graph with no isolated
vertices, such that α(G) ≥ 9c3/2, where c is a positive

integer. Then, the c-disjointness for the logical operator

L
G

c of the stabilizer code SGc is given by

∆c

(
L
G

c

)
= (α(G) + b)/c, (20)

where b = α(G)(c+ 1) mod 2.

Proof. Let A be a c-disjoint collection for L
G

c of largest

possible size, i.e., |A| = c∆c

(
L
G

c

)
. Lemma 1 implies

that a maximum independent set V ′ ⊆ V for G leads to

a c-disjoint collection for L
G

c of size α(G) + b, and thus,
by definition of A, we have |A| ≥ α(G) + b. Let A′ ⊆ A
be an independent collection within A of largest possible
size. Note that |A′| ≤ α(G), as the size of any indepen-
dent collection cannot be greater than the independence
number of G. Thus, we arrive at

|A| ≥ α(G) + b ≥ α(G) ≥ |A′|. (21)

Note that |A| = |A′| can hold only if b = 0, and in
that case we recover Eq. (20). In what follows, we thus
consider the case A \ A′ 6= ∅ and choose L ∈ A \ A′.

By definition, A′ is the largest independent collection
within A. Thus, Lemma 2 implies that

|A′| ≥ |A| − 3c(c− 1) ≥ 9c3/2− 3c(c− 1) ≥ c+ 1, (22)

where the last inequality holds for any positive integer c.
Subsequently, let L1, . . . , Lc+1 ∈ A′ be c+1 different sub-
sets of vertices and select vertices vi ∈ Li for i ∈ [c+ 1].
We can rule out the possibility that L∩

⋃
A′ = ∅, where

for brevity we write
⋃
A′ =

⋃
L′∈A′ L

′. Namely, as-
sume L ∩

⋃
A′ = ∅. In that case, there must exists an

edge e ∈ E incident to u ∈ L and v ∈
⋃
A′; otherwise,

A′ ∪ {L} ⊆ A would be an independent collection larger
than A′, leading to a contradiction. Without loss of gen-
erality, let vc = v. Then, qubit (e, {vi}i∈[c−1]) supports
c+1 different logical operators X(L), X(L1),. . . , X(Lc),
which is in a contradiction with A being c-disjoint. We
thus conclude that L ∩

⋃
A′ 6= ∅.

We can show that L ⊇
⋃
A′ by assuming the con-

trapositive. Since L ∩
⋃
A′ 6= ∅, there exists a vertex

v ∈
⋃
A′\L. Without loss of generality, let vc ∈ L∩

⋃
A′

and vc+1 = v. Then, one of the qubits (vc, {vi}i∈[c−1]) or
(vc+1, {vi}i∈[c−1]) is guaranteed to support X(L), on top
of other c different operators, either X(L1), . . . , X(Lc) or
X(L1), . . . , X(Lc−1), X(Lc+1), respectively. This is in a
contradiction with A being c-disjoint. We thus conclude
that L ⊇

⋃
A′.

Note that c has to be even; otherwise, the qubit
(vc, {vi}i∈[c−1]) would support c+ 1 different logical op-
erators X(L), X(L1), . . . , X(Lc), leading to a contradic-
tion. If c is even, then b = α(G) mod 2 and α(G) + b
is even. We also obtain that A \ A′ = {L}; other-
wise, there would exist at least two subsets of vertices
L,K ∈ A \ A′ satisfying L,K ⊇

⋃
A′ and the qubit

(vc−1, {vi}i∈[c−1]) would support at least c + 1 different
operators X(L), X(K), X(L1), . . . , X(Lc−1), leading to a
contradiction. We thus conclude that |A| = |A′|+ 1.



6

There are two cases to consider: (i) L =
⋃
A′ and

(ii) L \
⋃
A′ 6= ∅. Recall that for any subset of vertices

L′ ⊆ V the Pauli operatorX(L′) is a representative of L
G

c

iff |L′| ≡ 1 mod 2. First, assume that the proposition
(i) holds. Then, |A′| ≡ 1 mod 2; otherwise,

|L| = |
⋃
A′| =

∑
L′∈A′

|L′| ≡ |A′| ≡ 0 mod 2, (23)

leading to a contradiction with X(L) being a represen-

tative of L
G

c . Using |A| = |A′| + 1, Eq. (21) and the
fact that α(G) + b is even, we finally recover Eq. (20).
Now, assume that the proposition (ii) holds. Then,
A′ ∪ {L \

⋃
A′} is an independent collection; otherwise,

there would exist an edge e ∈ E incident to vertices
u ∈ L \

⋃
A′ and v ∈

⋃
A′, we could set vc = v and the

qubit (e, {vi}i∈[c−1]) would support c+ 1 different logical
operators X(L), X(L1), . . . , X(Lc), leading to a contra-
diction. Since the size of any independent collection is at
most α(G), thus |A′| + 1 ≤ α(G). Using |A| = |A′| + 1
and Eq. (21), we conclude that b = 0 and subsequently
recover Eq. (20).

C. Putting things together

Now, we are ready to establish the main result of our
work, which asserts that it is NP-complete to calculate
(or even approximate) the c-disjointness for any positive
integer constant c.

Theorem 4. For any positive integer constant c the de-
cision problem c-DISJOINTNESS is NP-complete. Fur-
thermore, for any ε > 0 it is NP-hard to approximate
the c-disjointness to within a multiplicative factor of
n(1−ε)/(c+1), where n is the number of physical qubits of
the stabilizer code.

Proof. First note that INDEPENDENT SET is NP-
complete, even if we restrict our attention to the graphs
with no isolated vertices and the independence number
greater or equal to 9c3/2, which we require in our proof.
We can show that c-DISJOINTNESS is NP-hard by re-
ducing INDEPENDENT SET to it.

Let G = (V,E) be a graph satisfying α(G) ≥ 9c3/2.
We construct a new graph G′ = (V ′, E′) as follows: for
every vertex v ∈ V we introduce two vertices v1, v2 ∈ V ′,
and for every edge (u, v) ∈ E we introduce four edges
(u1, v1), (u1, v2), (u2, v1), (u2, v2) ∈ E′. One can show
that

α(G′) = 2α(G). (24)

Following Section II A, we construct the stabilizer code

SG′c and the logical operator L
G′

c . Since α(G′) ≡ 0
mod 2, then from Lemma 3 we obtain

c∆c

(
L
G′

c

)
= α(G′) = 2α(G) (25)

and, subsequently, α(G) ≥ a iff c∆c

(
L
G′

c

)
≥ 2a. We con-

clude that the output of the c-DISJOINTNESS problem

for the instance SG′c , L
G′

c and 2a is the output of INDE-
PENDENT SET for G and a, which, in turn, establishes
that c-DISJOINTNESS is NP-hard.

Now we turn to approximation algorithms. Given the
graph G = (V,E), the number of physical qubits in the
stabilizer code SGc is

n ≤ |V |
(( |V |
c−1

)
+ 2
)

+ |E|
( |V |
c−1

)
< |V |c+1, (26)

where we use |E| ≤
(|V |

2

)
. Depending on the parity of

α(G)(c + 1), the size of the largest c-disjoint collection

for the logical operator L
G

c is equal to either α(G) or
α(G) + 1. Thus, for any ε > 0 the ability to approximate

the c-disjointness ∆c

(
L
G

c

)
to within a multiplicative fac-

tor of n(1−ε)/(c+1) implies that we can approximate α(G)
to within a multiplicative factor of n(1−ε)/(c+1) < |V |1−ε.
Because approximating α(G) is NP-hard, thus approxi-

mating the c-disjointness ∆c

(
L
G

c

)
is also NP-hard.

Finally, we show that c-DISJOINTNESS is in NP. Let
us consider a polynomial time verifier that takes as its
witness a collection A, which supposedly comprises rep-
resentatives of the logical operator L specified by its rep-
resentative L ∈ L. The verifier needs to check the follow-
ing three conditions: (i) the size of A is greater than ca
(ii) every qubit supports at most c operators from A, and
(iii) every element of A is a representative of L. Condi-
tions (i) and (ii) can be easily checked in time polynomial
in n. Also, condition (iii) can be stated equivalently as
follows: for every P ∈ A the operator PL belongs to
the stabilizer group S specifying the stabilizer code. Let
M be the binary matrix of size (n − k) × 2n that de-
scribes S. In order to check the last condition, for every
P ∈ A the verifier appends to M a row corresponding
to a string of 2n bits representing PL and computes its
rank over the field F2. The rank is equal to n− k iff P is
a representative of L. Since finding the rank of a binary
matrix can be done in time polynomial in its size, thus
the witness can be verified in time polynomial in n, and,
subsequently, c-DISJOINTNESS is in NP.

III. DISJOINTNESS IN PRACTICE

In this section we express the problem of calculating
the disjointness as a linear program with exponentially
many variables, which allows us to find the disjointness
in exponential time. We use this linear program to find
the disjointness of the [[14, 3, 3]] stabilizer code, and ul-
timately rule out the existence of a transversal logical
non-Clifford gate.



7

A. A linear program for disjointness

Let c be a positive integer and L be a non-trivial logi-
cal Pauli operator for an [[n, k, d]] stabilizer code. We can
formulate an optimization problem whose optimal value
is the c-disjointness ∆c

(
L
)
. Namely, for every represen-

tative L of L we introduce a variable xL, which admits
non-negative integer values and represents the number of
times the representative L appears in a collection A ⊆ L.
We want to maximize the size of A divided by c, i.e.,∑
L∈L xL/c, subject to A being c-disjoint. Note that this

constraint can be equivalently phrased as follows: for ev-
ery qubit i ∈ [n] we have

∑
L∈L:suppL3i xL/c ≤ 1. Thus,

we conclude that ∆c

(
L
)

can be found as a solution to an

integer linear program with 2n−k variables.
We can relax this integer linear program by removing

the integrality constraint of each variable and allowing
x′L = xL/c to be a non-negative real number for every

L ∈ L. We subsequently arrive at the following linear
program

maximize ∆ =
∑
L∈L

x′L, (27)

subject to ∀i ∈ [n] :
∑

L∈L:suppL3i

x′L ≤ 1, (28)

∀L ∈ L : x′L ≥ 0. (29)

We now state the following theorem.

Theorem 5. For any [[n, k, d]] stabilizer code and non-
trivial logical Pauli operator L ∈ L, the optimal value ∆∗

attained by the linear program in Eqs. (27)-(29) is equal
to the supremum of the c-disjointness for L, i.e.,

∆∗ = sup
c∈Z+

∆c

(
L
)
. (30)

Moreover, the supremum of the c-disjointness for L is

attained at some positive integer c∗ = 2poly(n2n−k), i.e.,

sup
c∈Z+

∆c

(
L
)

= ∆c∗
(
L
)
. (31)

Proof. Let c be any positive integer and A be a c-disjoint
collection for L of the largest possible size, i.e., |A| =
c∆c

(
L
)
. If xL is the number of times a representative

L ∈ L appears in A, then for every qubit i ∈ [n] we have∑
L∈L:suppL3i xL/c ≤ 1, as A is c-disjoint. Moreover,

∆∗ ≥
∑
L∈L

xL/c = ∆c

(
L
)
, (32)

leading to

∆∗ ≥ sup
c∈Z+

∆c

(
L
)
. (33)

Note that there exists some finite optimal solution to
the linear program in Eqs. (27)-(29), since every variable

x′L appears in at least one constraint and, subsequently,
every feasible solution is bounded, i.e., x′L ≤ 1 for all

L ∈ L. Moreover, we can specify the linear program in
Eqs. (27)-(29) in matrix form max{cTx | x ∈ Rn,Ax =
b,x ≥ 0}, where A is a binary matrix of size 2n−k × n
that captures the support of every representative, and b
and c are vectors of all ones of length n and 2n−k, respec-
tively. The existence of a finite optimal solution and the
fact that A, b and c have rational entries implies that
there exists a rational optimal solution {x∗L}L∈L whose
bit size is polynomially bounded in terms of the bit sizes
of A, b, and c [42]. Then, for every L ∈ L we can find
positive integers a∗L and b∗L, such that x∗L = a∗L/b

∗
L and

a∗Lb
∗
L ≤ 2poly(n2n−k). Let c∗ be the least common multiple

of all b∗Ls, i.e.,

c∗ = lcm({b∗L}L∈L). (34)

Clearly, c∗ < (2poly(n2n−k))2n−k

= 2poly(n2n−k). Let A∗
be a collection of representatives of L obtained by taking
x∗Lc

∗ copies of each L ∈ L. Since A∗ is c∗-disjoint and
|A∗| =

∑
L∈L x

∗
Lc
∗, we obtain that

∆∗ =
∑
L∈L

x∗L = |A∗|/c∗ ≤ ∆c∗
(
L
)
≤ sup
c∈Z+

∆c∗
(
L
)
.

(35)
Thus, the inequalities in Eqs. (33) and (35) have to be-
come equalities, which implies Eqs. (30)-(31).

Theorem 5 implies the following proposition.

Proposition 6. The disjointness of any stabilizer code
S satisfies the following equality

∆(S) = min
L∈L

sup
c∈Z+

∆c

(
L
)
. (36)

Proof. By definition of the disjointness, we have ∆(S) =
supc∈Z+

minL∈L∆c

(
L
)
. Theorem 5 guarantees that for

any non-trivial logical Pauli operator L ∈ L the supre-
mum of the c-disjointness for L is attained at some pos-
itive integer cL. Let c∗ be the least common multiple of
all cLs, i.e.,

c∗ = lcm
(
{cL}L∈L

)
. (37)

We then obtain

min
L∈L

∆c∗
(
L
)
≤ sup
c∈Z+

min
L∈L

∆c

(
L
)
≤ min

L∈L
sup
c∈Z+

∆c

(
L
)
(38)

= min
L∈L

∆cL

(
L
)
≤ min

L∈L
∆c∗

(
L
)
, (39)

where we use the max-min inequality and the fact that
∆a

(
L
)
≤ ∆ab

(
L
)

for any L ∈ L and a, b ∈ Z+. Thus, all
the above inequalities in Eqs. (38)-(39) have to become
equalities, which, in turn, implies Eq. (36).

We remark that the linear program in Eqs. (27)-(29),
with 2n−k variables and n constraints, can be solved in
time O(22.5(n−k)). Thus, the disjointness of the stabilizer
code S can be found in time O(22.5n−0.5k), as we can find
it by solving this linear program for all 22k − 1 logical
Pauli operators for S.



8

FIG. 2. The [[14, 3, 3]] stabilizer code is defined by placing
qubits (white dots) on the vertices of a rhombic dodecahe-
dron and introducing X-, Y - and Z-type stabilizer generators
for every red, green and blue face, respectively. We depict
“the azimuthal projection”, where the four corner qubits are
identified. Dots colored in red, green and blue correspond to
Pauli X, Y and Z operators, respectively.

B. An illustrative example

Now, we focus on an illustrative example of the re-
cently introduced [[14, 3, 3]] stabilizer code [34]; see Fig. 2.
We would like to understand whether any non-Clifford
logical operators for this code can be implemented via
transversal gates. If this was the case, then due to its
small size the [[14, 3, 3]] stabilizer code could prove useful
in, for instance, magic state distillation protocols. Since
the [[14, 3, 3]] stabilizer code is a non-CSS code, there are
no off-the-shelf techniques to find transversal gates; how-
ever, we can use the disjointness to rule out the possibility
of certain logical operations.

A brute-force approach to computing the c-
disjointness, even for c = 1 and small stabilizer
codes, is infeasible. In the case of the [[14, 3, 3]] stabilizer
code, there are 43 − 1 = 63 different non-trivial logical
Pauli operators, and each of them has 211 = 2048
representatives. Thus, for each logical Pauli operator
there are 22048 ≈ 3.2 × 10616 possible subsets of its
representatives, and we would need to check the qubit
overlap for each of them (as the 1-disjointness is achieved
with a set rather than a multiset).

We can, however, use the linear program specified in
Eqs. (27)-(29), which has 2048 variables and 14 con-
straints (excluding the positivity constraints). We nu-
merically find that the disjointness of the [[14, 3, 3]] stabi-
lizer code is 2; see the source code [43]. We also find that
the max-distance of the [[14, 3, 3]] stabilizer code is d↑ = 6.
Thus, using the bound from Eq. (1) we obtain that any
transversal gate can only implement logical operations
within the third level of the logical Clifford hierarchy.

We now obtain an improvement of the bound in
Eq. (1), which we subsequently use to rule out the pos-
sibility of any transversal gate that implements a non-
Clifford logical operation for the [[14, 3, 3]] stabilizer code.
Recall that the main proof idea in Ref. [30] is to evaluate
the (nested) group commutator of the transversal logi-
cal gate and M logical Pauli operators for the stabilizer
code S. If for every M -tuple of logical Pauli operators the

FIG. 3. For the [[14, 3, 3]] stabilizer code there are four logical
Pauli operators with disjointness 2. We depict their smallest-
weight representatives, where dots colored in red, green and
blue correspond to Pauli X, Y and Z operators, respectively.

resulting operator is a trivial logical operator, then the
transversal logical gate is in the M th level of the logical
Clifford hierarchy. To recast this condition, it is useful
to introduce the following quantity

ΩM (S) = max
{Li}i∈[M]

min
Li∈Li

∣∣∣∣ ⋂
i∈[M ]

suppLi

∣∣∣∣, (40)

where for each M -tuple of logical Pauli operators
{Li}i∈[M ] we seek an M -tuple of corresponding represen-

tatives Li ∈ Li, whose intersection
⋂
i∈[M ] suppLi is the

smallest. Then, we can formulate the following strength-
ening of Theorem 5 from Ref. [30].

Theorem 7. Consider a stabilizer code S with the min-
distance d↓. If M is a positive integer satisfying

ΩM (S) < d↓, (41)

then any transversal logical gate for S is in the M th level
of the logical Clifford hierarchy.

To establish that for the [[14, 3, 3]] stabilizer code any
transversal gate can only implement a logical Clifford
gate, it suffices to show that Ω2(S) < 3. First, consider
any pair of logical Pauli operators L1 and L2, for which,
without loss of generality, ∆

(
L1

)
> 2. Because the max-

distance is d↑ = 6, we can find a representative L2 ∈ L2

of weight six. By Lemma 4 from Ref. [30], there exists a
representative L1 ∈ L1 such that L1 and L2 overlap on at
most two qubits. Thus, we restrict our attention to the
logical Pauli operators L1 and L2, such that ∆

(
Li
)

= 2
for i ∈ [2]. There are exactly four of these operators;
see Fig. 3. By a brute-force search we verify that for



9

all ten pairs of these operators there exists a choice of
representatives that overlap on at most one qubit; see
the source code [43]. We finally conclude that Ω2(S) < 3
for the [[14, 3, 3]] stabilizer code.

IV. BOUNDS ON THE DISJOINTNESS

In this section, we provide bounds on the disjointness
for the CSS codes, concatenated codes and hypergraph
product codes, which, in turn, lead to the limitations on
transversal gates available in each code family.

A. CSS codes

Proposition 8. Let S be a CSS code and L = L
X
L
Z

be a
logical Pauli operator written in a standard logical basis.
Then, for any positive integer c and P ∈ {X,Z} the

largest c-disjoint collection for L
P

can be formed using
P -type operators and the following inequalities hold

∆c

(
L
)
≤ min
P∈{X,Z}

∆c

(
L
P
)
, (42)

∆
(
L
)
≥

∆
(
L

X
)

∆
(
L

Z
)

∆
(
L

X
)

+∆
(
L

Z
)
−1
, (43)

where ∆
(
L
)
, ∆
(
L
X
)

and ∆
(
L
Z
)

denote the supremum

of the c-disjointness for L, L
X

and L
Z

, respectively.

Proof. Let A and AP be the largest c-disjoint collections

for L and L
P

, respectively. Since L
P

is a P -type logical
Pauli operator, there exists a P -type operator LP , which

is a representative of L
P

. Then, for every representative
L ∈ AP we can express it in the following way

L = LPSXL S
Z
L , (44)

where SXL and SZL are some X- and Z-type stabilizer gen-
erators of S. Note that {LPSPL | L ∈ AP } is an example

of the desired c-disjoint collection for L
P

. Similarly, for
every representative L ∈ A we have

L = LXSXL L
ZSZL . (45)

Since {LPSPL | L ∈ A} is a c-disjoint collection for L
P

, we

conclude that ∆c

(
L
)
≤ ∆c

(
L
P
)

and establish Eq. (42).

Theorem 5 guarantees that we can find an integer
cP and a cP -disjoint collection A′P , such that

∣∣A′P ∣∣ =

cP∆
(
L
P
)

. Note that A′ = {LL′ | L ∈ A′X , L′ ∈ A′Z}
is a collection of representatives of L of size

|A′| = cX∆
(
L
X
)
cZ∆

(
L
Z
)
. (46)

Since there are at most

c′ = cX
∣∣A′Z∣∣+ cZ

∣∣A′X ∣∣− cXcZ (47)

= cXcZ
(

∆
(
L
X
)

+ ∆
(
L
Z
)
− 1
)

(48)

elements of A′ that are supported on any given qubit,
thus A′ is c′-disjoint. This, in turn, allows us to conclude
that ∆

(
L
)
≥ |A′|/c′ and establish Eq. (43).

We remark that Proposition 6 and Proposition 8 im-
mediately imply that

min
L∈LX∪LZ

∆
(
L
)
/2 < ∆(S) ≤ min

L∈LX∪LZ
∆
(
L
)
, (49)

where LP denotes the set of all non-trivial P -type logi-
cal operators in a standard logical basis for P ∈ {X,Z}.
Thus, in order to obtain an approximation up to a mul-
tiplicative factor of two to the disjointness of any CSS
code it suffices to consider the c-disjointness for its X-
and Z-type logical operators.

B. Concatenated stabilizer codes

Proposition 9. Let Si be a stabilizer code with the min-

distance d
(i)
↓ > 1, max-distance d

(i)
↑ and disjointness

∆(Si), where i ∈ [2]. Then, the disjointness of the con-
catenated code S1 C S2 satisfies the following inequality

∆(S1 C S2) ≥ ∆(S1) ∆(S2) . (50)

Moreover, if M is the level of the logical Clifford hierarchy
attainable by transversal logical gates for S1 C S2, then

M ≤Mmax = max
i∈[2]

⌊
log∆(i)

(
d

(i)
↑ /d

(i)
↓

)⌋
+ 2. (51)

Proof. Let P = {I,X, Y, Z} be the set of single-qubit
Pauli operators (modulo the phase) and ni be the number
of physical qubits of the stabilizer code Si for i ∈ [2]. Let

KP be a representative of the logical operator K
P

for the
stabilizer code S2, where we always choose KI to be the
identity operator. Note that if L =

⊗n1

i=1 Pi implements

a logical Pauli operator L for the stabilizer code S1, where
Pi ∈ P for i ∈ [n1], then the following operator

LC
{
KP

}
P∈P =

n1⊗
i=1

KPi (52)

implements L for the concatenated code S1 C S2.
Using Theorem 5 and Proposition 6 we can find a pos-

itive integer c(2), such that for any P ∈ P \ {I} we have

∆c(2)

(
K
P
)
≥ ∆(S2) . (53)

Subsequently, for K
P

we can find a c(2)-disjoint collection{
KP
i

∣∣ i ∈ [m]
}
, (54)

where m = dc(2)∆(S2)e. Similarly, we can find a positive
integer c(1), such that for any non-trivial logical Pauli
operator L for the stabilizer code S1 we have

∆c(1)
(
L
)
≥ ∆(S1) . (55)



10

This, in turn, implies the existence of a c(1)-disjoint col-
lection A for L that satisfies the following inequality

|A| ≥ dc(1)∆(S1)e. (56)

Let A′ be a collection of representatives of L for the
concatenated code S1 C S2 defined as follows

A′ =

{
LC

{
KP
i

}
P∈P

∣∣∣∣ L ∈ A, i ∈ [m]

}
. (57)

By construction, we have

|A′| = m|A| ≥ c(1)c(2)∆(S1) ∆(S2) . (58)

It is straightforward to show that A′ is c(1)c(2)-disjoint.
Thus, we obtain

∆(S1 C S2) ≥ ∆c(1)c(2)
(
L
)

(59)

≥ |A′|/(c(1)c(2)) ≥ ∆(S1) ∆(S2) , (60)

which establishes the inequality in Eq. (50)

Let Mi = log∆(Si)

(
d

(i)
↑ /d

(i)
↓

)
. One can easily establish

the following inequalities

d↑(S1 C S2) ≤ d(1)
↑ d

(2)
↑ , (61)

d↓(S1 C S2) ≥ d(1)
↓ d

(2)
↓ , (62)

which, together with the inequality in Eq. (50), lead to

d↑(S1 C S2) ≤ d(1)
↑ d

(2)
↑ = d

(1)
↓ d

(2)
↓ ∆(S1)

M1 ∆(S2)
M2 (63)

≤ d↓(S1 C S2)∆(S1)
M1 ∆(S2)

M2 (64)

< d↓(S1 C S2) (∆(S1) ∆(S2))
Mmax (65)

≤ d↓(S1 C S2)∆(S1 C S2)
Mmax , (66)

where we use the fact that ∆(Si) > 1 and Mmax > Mi

for i ∈ [2]. Then, using the inequality in Eq. (1), we ob-
tain a bound on the level of the logical Clifford hierarchy
attainable by transversal gates for S1 C S2, which is the
inequality in Eq. (51).

We remark that Proposition 9 asserts that the level
of the logical Clifford hierarchy attainable by transversal
logical gates for the concatenated code S1 C S2 cannot
exceed the bounds in Eq. (1) for the stabilizer codes S1

and S2. However, these bounds are not necessarily satu-
rated. Thus, we cannot immediately rule out the possi-
bility that transversal logical gates for S1CS2 may attain
a level of the logical Clifford hierarchy higher than the
levels attained by transversal logical gates for S1 and S2.
Lastly, we acknowledge that the bound in Eq. (50) has
been previously independently derived in Ref. [31].

C. Hypergraph product codes

Let S be a CSS code and LP be the set of all non-
trivial P -type logical operators in a standard logical ba-
sis, where P ∈ {X,Z}. We now introduce the P -type
disjointness ∆P (S) of the CSS code S as follows

∆P (S) = sup
c≥1

min
L∈LP

∆c

(
L
)
. (67)

Similarly as for the disjointness, we can show that the
P -type disjointness satisfies the following equality

∆P (S) = min
L∈LP s

sup
c≥1

∆c

(
L
)
. (68)

By definition, we have

∆P (S) ≥ ∆(S) . (69)

The P -type disjointness ∆P (S) is useful when the sta-
bilizer group S is generated by only P -type operators. In
such a case, the min-distance of the stabilizer code S is
one, i.e., d↓ = 1. Subsequently, Lemma 2(ii) in Ref. [30]
implies that ∆(S) = 1; however, ∆P (S) might still be
greater than one. This proves useful in the following
proposition, where we establish an upper bound on the
disjointness of hypergraph product codes.

Proposition 10. Let Hi be a full-rank binary matrix
of size mi × ni and Si be a stabilizer code specified by
the binary matrix (Hi|0mi,ni), where i ∈ [2]. Let S be a
hypergraph product code specified by the binary matrix in
Eq. (2). Then, the following inequality holds

∆(S) ≤ min
i∈[2]

∆X(Si). (70)

Proof. In what follows, we perform arithmetic operations
modulo 2. Let spanM denote the row span of a binary
matrix M . Note that a Pauli operator L1 is a represen-
tative of some non-trivial X-type logical operator L1 in
a standard logical basis for the stabilizer code S1 iff L1

is specified by the row vector (l1|01,n1
) ∈ {0, 1}2n1 , such

that l1 6∈ spanH1. Let l2 ∈ {0, 1}m2 be a non-zero row
vector, such that l2H2 = 01,n2

, and define

l = (l1 ⊗ l2|01,n2m1
). (71)

Then, we have(
In1
⊗HT

2

∣∣HT
1 ⊗ In2

)
lT = 0n1n2,1. (72)

Moreover, l 6∈ span (H1 ⊗ Im2
|Im1

⊗H2); otherwise, we
would obtain that l1 ∈ spanH1, leading to a contradic-
tion. We thus conclude that a Pauli operator L specified
by the row vector (l|01,n1m2+n2m1) is a representative of
some X-type logical operator for the stabilizer code S.

Let c be a positive integer and A be a c-disjoint collec-
tion for L of the largest possible size, i.e., |A| = c∆c

(
L
)
.

Since the stabilizer code S is a CSS code and L is an
X-type logical operator, thus Proposition 8 implies that



11

we can select A in a way that it contains only X-type
operators. Let λ ∈ [m2] be a position of any non-zero
entry of l2 and define the index subset

Λ = {λ+ (i− 1)m2 | i ∈ [n1]}. (73)

We also treat Λ as the subset of qubits whose indices
belong to Λ. By definition of the stabilizer group of the
hypergraph product code, if S is an X-type stabilizer
operator from S, then its restriction S|Λ to the subset
of qubits Λ is an X-type stabilizer operator from S1.
Moreover, for the representative L of the logical operator
L, its restriction L|Λ is a representative of the logical
operator L1. Thus, a collection

AΛ = {K|Λ | K ∈ A} (74)

comprises representatives of L1. Since A is c-disjoint, it
has to be c-disjoint on the subset of qubits Λ, which im-
mediately implies that AΛ is c-disjoint. Thus, we obtain

∆c

(
L1

)
≥ |AΛ|/c = |A|/c = ∆c

(
L
)
, (75)

and, subsequently, ∆X(S1) ≥ ∆(S).
To establish the inequality in Eq. (70), we show that

∆X(S2) ≥ ∆(S) in a similar way. First, we note that
for any X-type logical operator L2 for the stabilizer code
S2 a Pauli operator L2 is a representative of L2 iff L2 is
specified by a row vector (l′2|01,n2

) ∈ {0, 1}2n2 , such that
l′2 6∈ spanH2. Then, we choose l′1 ∈ {0, 1}m1 to be any
non-zero row vector, such that l′1H1 = 01,n1

, and define
l′ = (01,n1m2

|l′1 ⊗ l′2). Finally, let c be a positive integer.
We can then show that any c-disjoint collection for the

logical operator L
′
, whose representative is specified by

the row vector (l′|01,n1m2+n2m1
), gives rise to a c-disjoint

collection for L2. This, in turn, implies that ∆c

(
L2

)
≥

∆c

(
L
′)

, and, subsequently, ∆X(S2) ≥ ∆(S).

We remark that unlike other bounds in this section,
Eq. (70) provides an upper bound on the disjointness.
As such, it does not lead to a bound on the level of the
Clifford hierarchy attainable by transversal logical gates
for the hypergraph product code.

V. DISCUSSION

The main result of our work, which is Theorem 4,
established that for any positive integer constant c the

problem of calculating the c-disjointness (or even ap-
proximating it up to within a multiplicative factor) is
NP-complete. Although we have not shown that calcu-
lating the disjointness of stabilizer codes is hard, Theo-
rem 4 suggests so. In general, our results indicate that
finding fault-tolerant logical gates for generic quantum
error-correcting codes is a computationally challenging
task. Other results presented in our work included: (i)
formulating a linear program to calculate the disjoint-
ness, (ii) strengthening the main result of Ref. [30], and
(iii) providing bounds on the disjointness for various sta-
bilizer code families. Lastly, we remark that the source
code [43] can be used to numerically estimate the dis-
jointness of small stabilizer codes and, subsequently, rule
out the existence of certain transversal logical gates.

We hope that our work initiates and motivates a thor-
ough search of methods of finding the disjointness, as
well as fault-tolerant logical gates at large. We expect
that there exist efficient algorithms to calculate or ap-
proximate the disjointness for certain code families, such
as topological quantum codes. We emphasize that clever
usage of the underlying code symmetries might further
simplify this problem. For example, for codes that are
invariant under certain permutations of qubits, the num-
ber of variables in the linear program in Eqs. (27)-(29)
to find the disjointness can be reduced from 2n to 2n/n.
Moreover, it would be interesting to make the connection
between the disjointness and other code quantities, such
as the price [44].

ACKNOWLEDGMENTS

A.K. thanks David Gosset, Andrew Landahl, Pooya
Ronagh and Jamie Sikora for helpful discussions. A.K.
acknowledges funding provided by the Simons Founda-
tion through the “It from Qubit” Collaboration. Re-
search at Perimeter Institute is supported in part by the
Government of Canada through the Department of Inno-
vation, Science and Economic Development Canada and
by the Province of Ontario through the Ministry of Col-
leges and Universities. This work was completed prior to
A.K. joining AWS Center for Quantum Computing.

[1] P. Shor, Fault-tolerant quantum computation, in Pro-
ceedings of 37th Conference on Foundations of Computer
Science (IEEE Comput. Soc. Press, 1996) pp. 56–65.

[2] A. M. Steane, Active stabilization, quantum computa-
tion, and quantum state synthesis, Physical Review Let-
ters 78, 2252 (1997).

[3] E. Knill, Quantum computing with realistically noisy de-
vices, Nature 434, 39 (2005).

[4] E. Knill, Scalable quantum computing in the presence of
large detected-error rates, Physical Review A 71, 042322
(2005).

[5] H. Bomb́ın, Gauge color codes: Optimal transversal gates

https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.71.042322
https://doi.org/10.1103/PhysRevA.71.042322


12

and gauge fixing in topological stabilizer codes, New
Journal of Physics 17, 083002 (2015).

[6] A. Kubica and M. E. Beverland, Universal transversal
gates with color codes: A simplified approach, Physical
Review A 91, 032330 (2015).

[7] F. H. Watson, E. T. Campbell, H. Anwar, and D. E.
Browne, Qudit color codes and gauge color codes in all
spatial dimensions, Physical Review A 92, 022312 (2015).

[8] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
color code, New Journal of Physics 17, 083026 (2015).

[9] H. Bomb́ın, Transversal gates and error propagation in
3D topological codes, arXiv:1810.09575 (2018).

[10] T. Jochym-O’Connor and T. J. Yoder, Four-dimensional
toric code with non-Clifford transversal gates, Physical
Review Research 3, 13118 (2021).

[11] M. Vasmer and A. Kubica, in preparation (2021).
[12] H. Bomb́ın, Dimensional jump in quantum error correc-

tion, New Journal of Physics 18, 043038 (2016).
[13] H. Bomb́ın, 2D quantum computation with 3D topolog-

ical codes, arXiv:1810.09571 (2018).
[14] A. Kubica, The ABCs of the color code: A study of

topological quantum codes as toy models for fault-tolerant
quantum computation and quantum phases of matter,
Ph.D. thesis (2018).

[15] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures,
Physical Review A 100, 012312 (2019).

[16] B. J. Brown, A fault-tolerant non-clifford gate for the
surface code in two dimensions, Science Advances 6,
10.1126/sciadv.aay4929 (2020).

[17] J. Iverson and A. Kubica, in preparation (2021).
[18] E. Knill, Fault-Tolerant Postselected Quantum Compu-

tation: Schemes, arXiv:quant-ph/0402171 (2004).
[19] E. Knill, Fault-Tolerant Postselected Quantum Com-

putation: Threshold Analysis, arXiv:quant-ph/0404104
(2004).

[20] S. Bravyi and A. Kitaev, Universal quantum computa-
tion with ideal Clifford gates and noisy ancillas, Physical
Review A 71, 022316 (2005).

[21] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
Universality: A Comparative Study of the Overhead of
State Distillation and Code Switching with Color Codes,
PRX Quantum 2, 020341 (2021).

[22] B. Eastin and E. Knill, Restrictions on Transversal En-
coded Quantum Gate Sets, Physical Review Letters 102,
110502 (2009).

[23] B. Zeng, A. Cross, and I. L. Chuang, Transversality ver-
sus universality for additive quantum codes, IEEE Trans-
actions on Information Theory 57, 6272 (2011).

[24] P. Faist, S. Nezami, V. V. Albert, G. Salton,
F. Pastawski, P. Hayden, and J. Preskill, Continuous
Symmetries and Approximate Quantum Error Correc-
tion, Physical Review X 10, 041018 (2020).

[25] M. P. Woods and Á. M. Alhambra, Continuous groups of
transversal gates for quantum error correcting codes from
finite clock reference frames, Quantum 4, 245 (2020).

[26] A. Kubica and R. Demkowicz-Dobrzański, Using Quan-
tum Metrological Bounds in Quantum Error Correction:

A Simple Proof of the Approximate Eastin-Knill Theo-
rem, Physical Review Letters 126, 150503 (2021).

[27] S. Bravyi and R. König, Classification of Topologically
Protected Gates for Local Stabilizer Codes, Physical Re-
view Letters 110, 170503 (2013).

[28] F. Pastawski and B. Yoshida, Fault-tolerant logical gates
in quantum error-correcting codes, Physical Review A
91, 13 (2015).

[29] M. E. Beverland, O. Buerschaper, R. Koenig,
F. Pastawski, J. Preskill, and S. Sijher, Protected gates
for topological quantum field theories, Journal of Math-
ematical Physics 57, 44 (2016).

[30] T. Jochym-O’Connor, A. Kubica, and T. J. Yoder, Dis-
jointness of Stabilizer Codes and Limitations on Fault-
Tolerant Logical Gates, Physical Review X 8, 021047
(2018).

[31] P. Webster, M. Vasmer, T. R. Scruby, and S. D. Bartlett,
Universal Fault-Tolerant Quantum Computing with Sta-
biliser Codes, arXiv:2012.05260 (2020).

[32] D. Gottesman, Class of quantum error-correcting codes
saturating the quantum Hamming bound, Physical Re-
view A 54, 1862 (1996).

[33] D. Gottesman and I. L. Chuang, Demonstrating the vi-
ability of universal quantum computation using telepor-
tation and single-qubit operations, 402, 390 (1999).

[34] A. J. Landahl, The surface code on the rhombic dodeca-
hedron, arXiv:2010.06628 (2020).

[35] A. Calderbank and P. Shor, Good quantum error-
correcting codes exist, Physical Review A 54, 1098
(1996).

[36] A. Steane, Multiple-Particle Interference and Quantum
Error Correction, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 452,
2551 (1996).

[37] E. Knill and R. Laflamme, Concatenated Quantum
Codes, arXiv:quant-ph/9608012 (1996).

[38] J. P. Tillich and G. Zemor, Quantum LDPC codes with
positive rate and minimum distance proportional to the
square root of the blocklength, IEEE Transactions on
Information Theory 60, 1193 (2014).

[39] M. R. Garey and D. S. Johnson, Computer and In-
tractability: A Guide to the Theory of NP-Completeness
(W. H. Freeman and Company, 1979).

[40] J. Hastad, Clique is hard to approximate within n/sup
1-/spl epsiv, in Proceedings of 37th Conference on Foun-
dations of Computer Science (IEEE, 1996) pp. 627–636.

[41] D. Zuckerman, Linear degree extractors and the inap-
proximability of max clique and chromatic number, The-
ory of Computing 3, 103 (2007).

[42] G. B. Dantzig, Maximization of a linear function of vari-
ables subject to linear inequalities, Activity analysis of
production and allocation 13, 339 (1951).

[43] J. Bostanci, Disjointness, https://github.com/

quantumCodewords/disjointness (2020).
[44] F. Pastawski and J. Preskill, Code Properties from Holo-

graphic Geometries, Physical Review X 7, 021022 (2017).

https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.92.022312
https://doi.org/10.1088/1367-2630/17/8/083026
http://arxiv.org/abs/1810.09575
https://doi.org/10.1103/physrevresearch.3.013118
https://doi.org/10.1103/physrevresearch.3.013118
https://doi.org/10.1088/1367-2630/18/4/043038
http://arxiv.org/abs/1810.09571
https://thesis.library.caltech.edu/10955/
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1126/sciadv.aay4929
https://arxiv.org/abs/quant-ph/0402171v1
https://arxiv.org/abs/quant-ph/0404104v1 http://arxiv.org/abs/quant-ph/0404104
https://arxiv.org/abs/quant-ph/0404104v1 http://arxiv.org/abs/quant-ph/0404104
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1103/PhysRevX.10.041018
https://doi.org/10.22331/q-2020-03-23-245
https://doi.org/10.1103/PhysRevLett.126.150503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1063/1.4939783
https://doi.org/10.1063/1.4939783
https://doi.org/10.1103/PhysRevX.8.021047
https://doi.org/10.1103/PhysRevX.8.021047
http://arxiv.org/abs/2012.05260
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1038/46503
http://arxiv.org/abs/2010.06628
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
http://arxiv.org/abs/quant-ph/9608012
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006
https://github.com/quantumCodewords/disjointness
https://github.com/quantumCodewords/disjointness
https://doi.org/10.1103/PhysRevX.7.021022

	Finding the disjointness of stabilizer codes is NP-complete
	Abstract
	I Preliminaries
	A Stabilizer code constructions
	B Distance and disjointness
	C Computational complexity and graph theory

	II Hardness of finding and approximating the c-disjointness
	A Constructing the CSS stabilizer code
	B Relating the c-disjointness to the independence number
	C Putting things together

	III Disjointness in Practice
	A A linear program for disjointness
	B An illustrative example

	IV Bounds on the disjointness
	A CSS codes
	B Concatenated stabilizer codes
	C Hypergraph product codes

	V Discussion
	 Acknowledgments
	 References


