
Learning the closest product state

Ainesh Bakshi∗ John Bostanci† William Kretschmer♭ Zeph Landau♭

Jerry Li♮ Allen Liu∗ Ryan O’Donnell♯ Ewin Tang♭

∗MIT, †Columbia, ♭UC Berkeley, ♮University of Washington, ♯Carnegie Mellon University

Abstract

We study the problem of finding a (pure) product state with optimal fidelity to an
unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental
question in quantum learning: is it possible to efficiently learn a simple approximation to
an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to
optimal, using N = npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show
that estimating the optimal fidelity is NP-hard for error ε = 1/poly(n), showing that the
error dependence cannot be significantly improved.

For our algorithm, we build a carefully-defined cover over candidate product states,
qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate
constrained polynomial optimization. For our proof of hardness, we give a formal reduction
from polynomial optimization to finding the closest product state. Together, these results
demonstrate a fundamental connection between these two seemingly unrelated questions.
Building on our general approach, we also develop more efficient algorithms in three simpler
settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete
class of product states; and when we are allowed to output a matrix product state.
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1 Introduction

When can we obtain a classical description of a complex quantum system? This problem, at
the heart of quantum information theory, is one commonly faced by experimentalists: when
we have a large, intricate quantum device, how can we tell what it is doing? Due to the
exponentiality inherent to quantum mechanics, a generic system of n particles is described by
a number of parameters scaling exponentially with n, so in general, an efficient description
simply does not exist. However, real-world systems are not generic: the physics governing the
device will suggest a corresponding model of the system, giving us a hint for how the system
can be efficiently described.

Simultaneously, in real-world applications, the state which one is learning may not—and
typically will not—exactly fall within a given model class, due to noise or other forms of
imprecision in how our model represents the real world. In light of this, the natural question is
to seek the best approximation to the underlying state within the prescribed model. Such an
approximation can serve as a far more tractable proxy for the true state when it is complex to
describe exactly. In this work, we consider the problem for the class of product states, arguably
the most fundamental class of states to consider. Stated plainly, the question we ask is the
following:

Can we efficiently learn the best product state approximation to any given state?

We formalize this problem as follows:

Problem 1 (Learning the closest product state). Consider the set of n-qubit product states
P = {|π1⟩ ⊗ · · · ⊗ |πn⟩}, and let ε, δ > 0 be error parameters. Given N copies of an arbitrary
n-qubit state with density matrix ρ, output a classical description of a state |π⟩ ∈ P such that,
with probability ⩾ 1− δ,

⟨π| ρ |π⟩ ⩾ OPT− ε , where OPT = max
|π⟩∈P

⟨π| ρ |π⟩ .

Product states are natural to study in this context for a number of reasons. Because of
the locality inherent in physical systems, we commonly model physical systems with states
exhibiting low entanglement. Chief among them are mean-field theories, which model systems as
states which exhibit zero entanglement, e.g., product states [BH16]. The mean-field approximation
plays a central role in domains relevant to quantum computing: in particular, in quantum
chemistry, mean-field theories like Hartree-Fock theory and density functional theory are the
standard algorithmic workhorses for understanding chemical processes [Cha24]. In light of
this, we can rephrase Problem 1 as asking for the best (pure) mean-field approximation to an
arbitrary quantum state, and for the quality of that approximation. From this perspective, we
believe that obtaining an efficient algorithm for Problem 1 will have important implications
both for validating the effectiveness of these theories and for understanding their properties in
real-world settings.

As an example application, physicists already run computations to solve Problem 1 in the
setting where the input is not a quantum state, but a description of a condensed matter system.
Collective entanglement of a multipartite state is often measured by OPT, the best fidelity of
the state with a product state, also known as the geometric measure of entanglement [WG03]. Since
its introduction in 2003, this entanglement measure has been used to understand a variety
of condensed matter systems (see related work). An algorithm for Problem 1 can be used to
compute the geometric measure of entanglement for states which are efficiently preparable on
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a quantum computer, by preparing copies of the state and running the algorithm to estimate
OPT, giving an advantage when such states are classically intractable.

Despite the apparent simplicity of the problem, relatively little was known about the
computational complexity of Problem 1. From a statistical point of view, one can obtain sample-
efficient learners via classical shadow estimation [HKP20] or shadow tomography [Aar20],
but these estimators require exponential runtime. On the other hand, efficient algorithms
were known only for highly restricted versions of the problem [GIKL24]. This lack of efficient
algorithms might be surprising, as when when the unknown state ρ is a product state, i.e.
OPT = 1, this task is easy: many algorithms work, including learning every register separately.
However, these algorithms are brittle, and fail catastrophically when OPT < 0.99. Even
algorithms for the related problem of product state testing, initiated by the important work
of Harrow and Montanaro [HM13], do not admit estimates of OPT when OPT is bounded
away from 1. In contrast, one would hope to obtain efficient algorithms even when OPT is a
small constant (say, 0.1): product states with constant fidelity are still great approximations,
considering that almost all product states will have fidelity exponentially small in n.

Beyond specific applications, we hope that understanding this algorithmic task can shed
light on a broader program in quantum learning theory. An emerging line of work has been
studying “learning the closest state in a hypothesis class”, also known as agnostic tomography:
formally, this problem is Problem 1, except the class of product states P is replaced with a
different hypothesis class C. Product states appear as a special case of several well-studied
classes of quantum states, including states described by low-depth quantum circuits, matrix
product states, and Gibbs states and ground states of local Hamiltonians. Understanding the
computational complexity of agnostic tomography of product states is therefore an important
stepping stone to building up to richer approximations. As we demonstrate below, it turns out
that learning the closest product state is already a surprisingly deep problem.

1.1 Results

We answer the aforementioned question in the affirmative and provide the first efficient algo-
rithm for agnostic tomography of product states:

Theorem 1.1 (Learning the closest product state, Theorem 5.2). There is an algorithm which, given
as input ε > 0 and N = npoly(1/ε) copies of an unknown n-qubit1 state ρ, runs in time poly(N) and
outputs the classical description of a pure product state |ϕ⟩ that, with probability at least 0.99, satisfies

⟨ϕ|ρ|ϕ⟩ ⩾ OPT− ε . (1)

The algorithm also produces an estimate of OPT to ε error.

We pause to make several comments about this result. First, the regime we are primarily
interested in is when ε is a constant (though possibly small). In this regime, our algorithm runs
in polynomial time. This resolves an open question posed in [GIKL24].

Secondly, our result holds for all values of OPT, and not just OPT close to 1. The setting
where OPT is a small constant (say, 0.1) is particularly challenging: in this regime, there may
not be a unique closest product state. In this setting, our algorithm in fact actually outputs a
net (albeit in a relatively weak sense) over all product states which are close to the unknown
state ρ; see Section 5 for more detailed discussion. Moreover, our algorithm does not need to

1For simplicity, we only consider when the local systems are qubits. We believe that the results should generalize
to qudits without too much struggle: see Remark 3.5.
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know the value of OPT, nor does it need even a lower bound on OPT (though if OPT is large
the algorithm’s complexity improves—see Remark 5.3). Note, however, that the guarantee on
the fidelity of |ϕ⟩ with ρ is only nontrivial when OPT > ε.

Finally, prior to this work, the only algorithms for this task were sample-efficient, but not
time-efficient. For example, a polynomial number of random Clifford measurements suffices
to estimate every fidelity with a product state ⟨π|ρ|π⟩ to ε error [HKP20]. However, there are
an exponential number of these product states, and computing even one fidelity from these
randomized measurements requires exponential time [JV14].

Improved product state testing. Agnostic tomography of product states is closely related
to the well-studied problem of product state testing [HM13], where the goal is to determine
whether or not a state |ψ⟩ is a product state, or has fidelity at most 1− ε with any product state.
In the former case, the test should always accept, and in the latter, the test should reject with
probability at least p, for some p = Θ(ε).

Our results shed new light on this problem: the celebrated tester of Harrow and Mon-
tanaro [HM13] exhibits a strange behavior, wherein their rejection probability satisfies p ⩽
1/2 + o(1), even when ε → 1. That is, for some reason, the tester cannot distinguish the case
where |ψ⟩ has overlap roughly 1/2 with some product state, versus the case where the state has
overlap≪ 1/2 with any product state. Since our algorithm also produces an estimate of OPT
to error ε, it improves upon the best-known guarantees for product state testing [SW22] in this
“tolerant” [Can20] regime.

Computational lower bounds. It is natural to ask whether or not one can hope for a running
time for this problem which is polynomial in both n and 1/ε. We complement our upper bound
with a lower bound, demonstrating that our runtime is, in a qualitative sense, close to optimal:

Theorem 1.2 (Hardness of product state approximation, Theorem 7.3). Suppose there is an efficient
quantum algorithm for solving the following problem: given poly(n) copies of an unknown, n-qubit
mixed state ρ, with probability ⩾ 0.01, output |ψ⟩ satisfying

⟨ψ|ρ|ψ⟩ ⩾ max
|π⟩∈P

⟨π|ρ|π⟩ − 1
poly(n)

.

Then BQP ⊇ NP.

In particular, this rules out algorithms with strongly polynomial dependencies on all pa-
rameters. We prove this hardness via a straightforward, polynomial-time reduction to an NP-
complete problem. Consequently, this also rules out any algorithms that have sub-exponential
dependence on 1/ε, assuming the quantum analog of the exponential time hypothesis. We in-
terpret this as saying that it is likely challenging to obtain substantial qualitative improvements
to the runtime in Theorem 1.1.

We also remark that this hardness result demonstrates an interesting computational-statistical
gap for the problem of finding the closest product state. Namely, classical shadow estima-
tion [HKP20] demonstrates that this regime can be solved sample efficiently, but on the other
hand, our lower bound demonstrates that this rate cannot be matched by any efficient algorithm.

Approximate tensor optimization. The upper and lower bound are based on a new connection
to the classical problem of approximate tensor optimization. Here, one is given a d-tensor T ∈
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(Cn)⊗d, and the goal is to find a unit vector x⃗ ∈ Cn satisfying

T(x⃗, . . . , x⃗) ⩾ max
∥u∥2=1

T(u⃗, . . . , u⃗)− ε∥T∥F .

Our lower bound proceeds by direct reduction to this problem for d = 4, which is known to be
NP-hard when ε = 1/ poly(n) [FL17], and our upper bound works by reducing the problem to
many different instances of constrained versions of this problem. This problem itself bears great
resemblance to the problem of solving dense CSPs, and indeed, we believe the techniques we
develop for constrained tensor optimization here may have applications to that setting as well.

Faster agnostic tomography of product states. In light of our lower bound, we ask whether
there are simpler algorithms for agnostic tomography of product states, perhaps under ad-
ditional assumptions. We show that this is true for three natural settings: (1) when the best
product state approximation is quite good; (2) when the number of choices for each qubit is
discrete; and (3) when the output is allowed to be a matrix product state.

First, we obtain a linear copy and nearly-quadratic time algorithm for agnostic tomogra-
phy of product states as long as the fidelity of the optimal solution exceeds a fixed constant
(namely, 5/6):

Theorem 1.3 (High-fidelity learning, Theorem 4.20). There is an algorithm that takes as input a
parameter ε > 0 as well as N = O(n/ε) copies of an n-qubit state ρ, and has the following guarantees:
Provided OPT > 5/6 + ε, it runs in O(Nn log n) time and outputs a pure product state |ψ⟩ that
satisfies

⟨ψ|ρ|ψ⟩ ⩾ OPT− ε ,

(except with probability at most .01).

In other words, so long as the quality of the product approximation OPT exceeds 5/6, there
is a strongly polynomial time algorithm for agnostic product state tomography. This stands in
stark contrast to the state of affairs for general OPT, where the hardness result demonstrates
such an algorithm is impossible. The threshold 5/6 naturally arises from our analysis, but it is
an interesting open question to what extent it can be pushed.

We remark that the runtime dependence of the algorithm is linear in 1/ε, even though it
is easily seen that estimating OPT to ±ε requires Ω(1/ε2) samples. For example, this lower
bound holds even in the special case when ρ = OPT |0⟩⟨0|+ (1−OPT) |1⟩⟨1| is a biased coin,
and we want to distinguish whether (say) OPT = 0.9 + ε or OPT = 0.9− ε. Our algorithm
demonstrates that the task of finding a state whose fidelity is within ε of the optimum may be
easier.

Second, we give an efficient algorithm for agnostic tomography, when the class of states is
the set of product states where each qubit is drawn from a finite set of possible states:

Theorem 1.4 (Learning of a finite class of product states, Theorem A.1). For k = 1, . . . , n, let
Ak denote a set of single qudit pure states satisfying |Ak| ⩽ s and |⟨ϕ|ϕ′⟩| ⩽ 1− δ for all distinct
|ϕ⟩ , |ϕ′⟩ ∈ Ak. Let A = A1 ⊗ · · · ⊗ An, and for any n-qudit quantum state ρ, let OPTA =

OPTA(ρ) = max|π⟩∈A ⟨π|ρ|π⟩. Then there is an algorithm which, given as input ε > 0 and N =

poly((ns)log(1/ε)/δ) copies of an n-qudit state ρ, runs in poly(N) time and outputs the classical
description of some |ψ⟩ ∈ A satisfying

⟨ψ|ρ|ψ⟩ ⩾ OPTA − ε ,

(except with probability at most .01).
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Stated plainly, so long as there are a finite set of possible states, and these states are all
pairwise separated, then there is an efficient algorithm for agnostic tomography for this class of
product states. We note that, similar to Theorem 1.1, our algorithm actually outputs all good
solutions. This result also directly generalizes prior work of Grewal, Iyer, Kretschmer, and
Liang [GIKL24], which studied the special case where each Ak is the set of 1-qubit stabilizer
states. A very similar result was also obtained independently in [CGYZ24], albeit with quite
different techniques.

Third, we give an algorithm for learning a good matrix-product state approximation of
a given state ρ. Matrix product states with small bond dimension can be used to efficiently
describe systems of multiple particles where particles share a small (but non-zero) amount of
entanglement, and are ubiquitous in quantum many-body physics [PVWC07; Sch11]. We give
an algorithm for agnostic tomography of matrix product states.

Theorem 1.5 (Agnostic (improper) learning of matrix product states, Theorem B.2). Let n, d, r be
positive integers, and let MPSn,d,r be the class of matrix product states on n qudits of local dimension
d with bond dimension r (Definition B.1). For any state ρ ∈ (Cd×d)⊗n, let OPTr = OPTn,d,r(ρ) =

max|ϕ⟩∈MPSn,d,r
⟨ϕ|ρ|ϕ⟩ be the maximum fidelity any such MPS has with ρ. There is an algorithm

which, given as input ε > 0 and N = poly(n, d, r, 1/ε) copies of an unknown n-qudit state ρ, runs
in time poly(N) and outputs the classical description of a matrix product state |ϕ̂⟩ of bond dimension
dn2 · poly(r, 1/ε) such that

⟨ϕ̂|ρ|ϕ̂⟩ ⩾ OPTr − ε ,

(except with probability at most .01).

We can relate this task back to learning the closest product state by taking r = 1 and d = 2;
then, MPSn,d,r is the class of product states over qubits, and our algorithm is able to output a
matrix product state with bond dimension n2 poly(1/ε) whose fidelity with ρ is at least OPT− ε.
This gives an improper learner for product states, “improper” referring to our output not being
a product state but instead a low-entanglement state. Our main result Theorem 1.1 is a proper
learner for product states. In the error regimes of our lower bound, this gives an instance where
improper agnostic learning is efficient, but proper agnostic learning is NP-hard. In general, the
output of this algorithm is an MPS with a bond dimension of at least rn2, which achieves a
fidelity which is optimal with respect to MPSs with bond dimension r; this dependence on n
in particular seems to be what makes this result more straightforward than proper learning of
MPSs.

For this task, we recognize that the algorithm of Cramer, Plenio, Flammia, Somma, Gross,
Bartlett, Landon-Cardinal, Poulin, and Liu [Cra+10] to learn an MPS also works when the input
state is not an MPS, but merely has large constant fidelity with an MPS; our contribution is to
generalize it to the agnostic case and perform the necessary analysis. We give a more detailed
discussion in Appendix B.

Techniques. All of these results, as well as Theorem 1.1, are all based on a common algorithmic
framework, which may have applications more broadly. At a very high level, our algorithms
sweep through the qubits one at a time, and generate a set of candidates for good solutions on
the qubits seen so far. This cover is then used as the starting point for generating candidates
over the subsequent qubits. The main algorithmic challenge is in making extending the cover
efficient. In the case of Theorem 1.1, extending this cover is intimately connected to tensor
optimization, as mentioned above. To achieve our faster algorithms Theorems 1.3 to 1.5, our

5



key insight is that there are relatively simple and “greedy” techniques that allow us to extend
this cover.

Our algorithms interleave classical computation with a particular quantum subroutine:
the only way we access ρ is to perform tomography on various subspaces of subsystems,
e.g. to estimate Π trS(ρ)Π for S some subset of qubits and Π a projector onto a subspace
of poly(n) dimension (which can be represented efficiently with a quantum circuit). Our
algorithms apply this subroutine to various choices of Π and S, which are adaptively chosen
after classical computation on the output of the previous tomography routines. Since such
a tomography subroutine can be performed with single-copy measurements, our algorithm
can also be performed with only single-copy measurements. However, the adaptivity of this
algorithm appears inherent: the classical shadows formalism [HKP20] is the standard technique
to allow algorithms like these to perform all of their measurements up-front, but doing this
comes at the cost of exponential running time, which we cannot tolerate.

1.2 Related work

Concurrent work. In independent and concurrent work, Chen, Gong, Ye, and Zhang [CGYZ24]
give an algorithm for agnostic tomography of a finite set of product states, attaining a near-
identical result to Theorem 1.4 via completely unrelated techniques. They also give an improved
algorithm when the product states are stabilizer; we are also able to get a similar improvement
in this setting(see Remark A.5 for more details).

Agnostic tomography. The notion of agnostic tomography was introduced by Grewal, Iyer,
Kretschmer, and Liang [GIKL24], though similar notions have been considered under the notion
“quantum hypothesis selection” [BO24] and in the PAC-learning setting; we refer to the survey
[AA23] for a thorough discussion. Recent work has given agnostic tomography algorithms
for stabilizer product states [GIKL24] and stabilizer states [CGYZ24]. These algorithms use
unrelated techniques.

Product state testing. A notable related algorithm is the product state test, which, using copies
of a state ρ is able to distinguish the cases that OPT = 1 from OPT ⩽ 1− ε. This algorithm,
introduced by [MKB05] and analyzed by Harrow and Montanaro [HM13], plays an important
role in complexity theory, being used to prove that QMA(2) = QMA(k) for k > 2. Though the
algorithm suffices for testing, it cannot be used to estimate OPT when OPT is bounded away
from 1 [HM13, Appendix B]. For similar reasons, it also does not seem to help with the task of
finding good product states.

Product state approximations in other contexts. Our algorithm shows that it is possible
to estimate the “geometric measure of entanglement” of a given pure state in polynomial
time. This measure of entanglement, defined by Wei and Goldbart [WG03; VPRK97], has seen
significant investigation as a measure of multipartite entanglement. This interest comes from
this measure’s potential to capture aspects of entanglement in condensed matter systems which
cannot be captured by the typical, bipartite measures of entanglement [WDMVG05; ODV08;
OW10]. See the survey of De Chiara and Sanpera for further discussion [DS18]. However,
research has been limited by computational intractability, so our work may give a possible
avenue to expand its scope via quantum simulation.

Mean-field approximations also arise naturally in contexts where we want to understand
things like ground states of many-body systems, and only have a handle on product states [BH16].
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For example, to prepare ground states of many-body systems, current heuristic phase estimation
methods have a running time which depends on the fidelity between the ground state and an
input product state [Lee+23].

Agnostic learning of product distributions. In some ways, the problem we consider here is
the quantum analog of the well-studied problem of agnostic learning of product distributions
on the hypercube. In its most basic form, we are given samples from a distribution that is
close to a product distribution over the hypercube, and the goal is to learn the optimal product
distribution approximation. Efficient algorithms for this problem were given in [DKKLMS19;
LRV16]. However, these algorithms only work when their version of OPT is sufficiently large;
in classical learning theory, the regime when OPT is small is known as list learning, and efficient
algorithms for list learning of product distributions are also known; see, e.g. [CSV17; KSS18].
However, the guarantees they obtain are quite incomparable to ours, and their techniques do
not have a meaningful parallel in the quantum setting.

Polynomial optimization. Polynomial optimization over the sphere is hard in general. Mul-
tiplicative approximations for optimizing low-degree polynomials in the worst case are well-
understood (see [BGGLT17] and references therein). However, polynomial optimization has still
found prominent applications in classical learning problems in the last decade. The polynomials
that naturally appear in these settings do not tend to be worst-case, and admit significantly better
approximations. Optimizing low-degree polynomials (often subject to polynomial constraints)
has become a key algorithmic primitive in dictionary learning [BKS15], tensor decomposi-
tion [HSS15], robustly learning Gaussian mixture models [MV10; BS15; LM21; BDJKKV22] and
private and list-decodable learning [HKMN23; KKK19; RY20; BK21]. These techniques have
also found applications in quantum tasks, such as best separable state [BKS17] and learning
quantum Hamiltonians [BLMT24; Nar24]. An interesting feature of our algorithm, compared to
this other work, is that we do not establish uniqueness of some strong structure arising from
the underlying parameters. Instead, we output a (non-unique) cover over solutions, and use
polynomial optimization as a subroutine to produce such a cover.

Optimizing low-degree polynomials over the hypercube also leads to approximation algo-
rithms for constraint satisfaction problems on dense and low-threshold rank graphs [BRS11;
RT12; MR17] and high-dimensional expanders [AGT19]. These results roughly proceed via
solving a sum-of-squares relaxation of a polynomial maximization problem, and obtain additive
error that scales proportional to ε times the ℓ2-norm of the coefficients of the polynomial and
runs in npoly(1/ε) time. Similar techniques have also appeared in the context of refuting random
CSP’s [RRS17].

A closely related problem is that of optimizing random polynomials over the sphere, which
has deep connections to statistical physics and admits an additive-error guarantee under full
replica-symmetry breaking [Sub20]. While our optimization problem does not involve random
polynomials, we show that we can optimize low-degree polynomials up to small additive-error
efficiently.

2 Technical overview

We now cover the key technical ideas of our algorithms. The precise version of the main
algorithm can be found in Algorithm 5.5, which describes its outer loop, and Algorithm 5.10,
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which describes the main subroutine. Further explanation of the subroutine can be found in
Section 5.2.

Why naive approaches fail. Given an n-qubit quantum state with density matrix ρ ∈ C2n×2n
,

we want to find the product state that maximizes fidelity with ρ. The obvious algorithm that
one might try to learn the closest product state is to take the best pure state approximation
to each of its single-qubit subsystems. This algorithm works if ρ itself is a pure product state.
However, the single-qubit subsystems do not contain enough information to deduce the best
product state, even when the fidelity of ρ with the best product state is very close to 1. This
phenomenon is why many naive approaches give exponentially poor approximations to the
optimal value.

An illustrative example is to consider ρ = |ψ⟩⟨ψ| where |ψ⟩ is the state proportional to

|ψ⟩ ∝
√

1− ε |0n⟩+
√

ε |+n⟩

for some small constant ε. Because ⟨+n|0n⟩ = 2−n/2, |ψ⟩ as written is exponentially close to
normalized. The fidelity with the product state |0n⟩ can be computed explicitly:2

⟨0n|ρ|0n⟩ = |⟨ψ|0n⟩|2 =

( √
1− ε +

√
ε/2n

∥
√

1 + ε |0n⟩+
√

ε |+n⟩∥2

)2

⩾ 1− ε .

In the limit of large n, the one-qubit density matrices of |ψ⟩ all approach

ρi =

[
1− ε/2 ε/2

ε/2 ε/2

]

We will see that there is a distinct state |ψ′⟩ that is also ε-close to a product state, and has
identical reduced density matrices, but for which |0n⟩ is a very bad product state approximation.
Take an eigendecomposition of ρi as

ρi = p1 |v1⟩⟨v1|+ p2 |v2⟩⟨v2| ,

with p1 > p2. The state
|ψ′⟩ = √p1 |v1⟩⊗n +

√
p2 |v2⟩⊗n

also has at least 1− ε fidelity with a product state (namely |v1⟩⊗n), and has all its local density
matrices equal to ρi. However, calculation shows that |⟨ψ′|0n⟩|2 decays exponentially to 0
in the limit of large n, because both |v1⟩ and |v2⟩ are constant-far from |0⟩. So, there is not
enough information in the one-qubit reduced density matrices to learn the best product state
approximation.

Barriers to agnostic product tomography. The hard case above illuminates broader challenges
inherent to this task. We are concerned with optimizing the fidelity ⟨π|ρ|π⟩ over the class of
product states; however, fidelity is typically quite poorly behaved. For example, almost all
product states have exponentially small fidelity with ρ, which is too small to detect, and the
fidelity landscape can have many local optima which thwart local search algorithms, like those
based on convex optimization. This ill-behavedness is a well-established phenomenon related
to the “barren plateau” problem in quantum machine learning [MBSBN18].

2It follows from one of our later results (Theorem 4.4) that the maximum product state fidelity with |ψ⟩ is
exponentially close to 1− ε.
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The regime where the optimal fidelity is a small constant like 0.1 is particularly challenging
since, unlike the case where OPT is near 1, there are many well-separated globally optimal
solutions. This lack of uniqueness presents basic issues for us: even if we manage to traverse
the fidelity landscape and find many locally-optimal product states with fidelity 0.1, how can
we conclude that we are done, and certify that there is no product state with fidelity 0.2?

Maintaining a cover over good product states. Our crucial insight is that we can efficiently
maintain a cover over all product states that have large fidelity. This insight is enabled by the
following observations:

1. If a product state |π⟩ has good fidelity with ρ, then its restriction to a subsystem S has
good fidelity with the partial trace of ρ onto the subsystem: ⟨π|ρ|π⟩ ⩽ ⟨πS|ρS|πS⟩.

2. The number of product states with good fidelity with ρ and which have pairwise small
fidelity with each other is small.

The first observation means that we do not have to optimize fidelity over the entire space of
product states: just those which are extensions of good product states over a subsystem. In
short, we can build a set of good product states qubit by qubit. The second observation means
that, instead of maintaining all good product states, of which there could be exponentially many,
it suffices to maintain a small number of well-separated good product states. In short, it suffices
to maintain a cover.

A priori, it is even unclear whether a small cover over such product states exists. Our main
technical contribution is to establish the existence of such a cover and demonstrate that it can
be computed efficiently. Our algorithm starts with a cover over good product states for ρ[1],
the state on qubit 1, and iteratively expands the cover a single qubit at a time. In particular,
we show that given a cover for qubits 1, 2, . . . , m− 1, extending it to qubit m can be reduced to
polynomial optimization problems over the sphere with a dimension-independent number of
ℓ2 and ℓ∞ constraints.

For the remainder of the section, we outline our approach to efficiently maintain a cover.

Fidelity and tangent distance. We begin by introducing a parametrization of product states
which is used throughout the paper. For a n-dimensional vector of complex numbers, z⃗ ∈ Cn,
we denote its corresponding product state by

|πz⃗⟩ =
n⊗

i=1

|0⟩+ zi |1⟩√
1 + |zi|2

.

Looking ahead, we ultimately want to optimize over these zi’s, so we want a notion of cover
which behaves nicely with respect to this parametrization. Fidelity is well-known to be an
unwieldy notion of distance between quantum states and is typically hard to analyze. So,
instead of constructing a cover directly using fidelity, we introduce an alternate measure
between product states:

Definition 2.1 (Tangent distance, Definition 3.4). Given two product states |πz⃗⟩ and |πa⃗⟩, the
tangent distance between them is defined as

dtan(|πz⃗⟩ , |πa⃗⟩) =
∥∥∥ z⃗− a⃗

1 + z⃗∗⃗a

∥∥∥
2
=
( n

∑
i=1

∣∣∣ zi − ai

1 + z∗i ai

∣∣∣2)1/2
.
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We call it “tangent distance” because, for a single qubit, this measure corresponds to |tan(θ)|,
where θ is the angle between the two states on the Bloch sphere. This notion of distance satisfies
several desiderata, including being invariant under single-qubit unitaries and being equal to
∥⃗z∥2 when a⃗ = 0⃗ (see Section 3.1 for details). Importantly, tangent distance can be related to
fidelity as follows (see Lemma 3.6 for a proof):

log
(

1
|⟨πz⃗|πa⃗⟩|2

)
⩽ dtan(|πz⃗⟩ , |πa⃗⟩)2 ⩽

1
|⟨πz⃗|πa⃗⟩|2

− 1 . (2)

Now, we can introduce our notion of cover under tangent distance3 (Definition 5.1): a cover
C over product states is (η, ε)-good for a state ρ if the following hold

• Good fidelity: For all product states |π⟩ ∈ C, ⟨π|ρ|π⟩ ⩾ η − ε;

• Separation: For all distinct |π⟩ , |π′⟩ ∈ C, dtan(|π⟩ , |π′⟩) ⩾ 2/η;

• Coverage: For any product state |ϕ⟩ such that ⟨ϕ|ρ|ϕ⟩ ⩾ η, there exists a |π⟩ ∈ C such
that dtan(|ϕ⟩ , |π⟩) ⩽ 3/η.

We design an algorithm which, given η and ε < η/3, outputs a (η, ε)-good cover, where every
product state |πz⃗⟩ in the cover is described by its parametrization z⃗. In particular, this gives a
product state with fidelity ⩾ η− ε, assuming a product state with fidelity η exists. By performing
binary search on η, one can use this to find a product state with fidelity ⩾ OPT− ε, as stated in
Theorem 1.1.

Existence of small covers. Our first step is to show that the size of an (η, ε)-good cover is at
most 6/η (see Claim 5.4). Let C = {⟨π(i)⟩}i be an (η, ε)-good cover. For intuition, suppose the
product states in the cover were not just well-separated but orthogonal. Then each captures a
different part of the “mass” of ρ. That is,

1 = tr(ρ) ⩾ ∑
i
⟨π(i)|ρ|π(i)⟩ ⩾ |C|(η − ε) ⩾ |C|(2η/3),

where the last two inequalities use the good fidelity property of the cover and that ε < η/3,
respectively. In general, ∑i ⟨π(i)|ρ|π(i)⟩ is equal to tr(MM†ρ) for M the matrix whose columns
are the states in the cover |π(i)⟩. Then,

|C|(2η/3) ⩽ tr(MM†ρ) ⩽ ∥MM†∥op = ∥M† M∥op ⩽ 1 + |C|(η/2),

giving the bound |C| ⩽ 6/η. In the last step, we used the well-separated condition: the diagonal
entries of M† M are 1, the off-diagonal ones have magnitude at most η/2 by Eq. (2), and by
the Gershgorin circle theorem the operator norm of MM† is bounded by the maximum sum of
magnitudes of any of its rows.

We can further show how to construct an (η, ε)-good cover algorithmically (Algorithm 5.5).
We do this by iteratively forming an (η, ε)-good cover for ρ[m], the partial trace of ρ onto qubits
1 through m, for m from 1 to n. We can construct a good cover for ρ[m] greedily: start with
Cm empty, and look for a violation of the coverage property. When we find one, add the
corresponding |ϕ⟩ to Cm, and repeat. Because we know an (η, ε)-good cover on m− 1 qubits
Cm−1, we can restrict our search to just look over product states |ϕ⟩ whose first m− 1 qubits are

3Though our algorithm naturally produces a cover with respect to tangent distance, one can use (2) to convert
the guarantees to those involving fidelity.
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close in tangent distance to an element of Cm−1. This makes the problem of finding a violation
tractable, since we only have to search in the neighborhood of some “root” product state. In
particular, we show that it suffices to solve the following optimization problem (see Claim 5.7).

maximize
z⃗∈Cm

⟨πz⃗| ρ |πz⃗⟩

subject to dtan(|πz⃗⟩ , |πa⃗⟩) ⩾ 2/η for all |πa⃗⟩ ∈ Cm,

dtan(|πz⃗⟩ , |π⃗0⟩) ⩽ 4/η.

(Tangent Cover)

The precise soundness and completeness guarantees needed are shown in Algorithm 5.5;
the constraints allow for significant slack. Note that the second constraint is equivalent to
∥⃗z∥2 ⩽ 4/η.

Constructing covers and polynomial optimization. Now, we consider the task of solving
(Tangent Cover). Solving this even in the simplest case is not straightforward. An example to
keep in mind is the following: suppose we are adding our first state to Cn, which is currently
empty. So, there are no “farness” constraints, the first kind of constraint in the program. Then,
let ρ = |ψ⟩⟨ψ|, where |ψ⟩ is a superposition over computational basis strings with Hamming
weight 0 and d:

|ψ⟩ = √γ |0n⟩+
√

1− γ

(n
d)

∑
x∈{0,1}n

|x|=d

|x⟩ .

We are imagining, say, γ = 0.9η. Then ⟨0n|ρ|0n⟩ = γ, so our root state has good fidelity, but not
quite enough to be a violation as we desire. (This can indeed happen; though |0n⟩ comes from
the cover Cn−1, so |0n−1⟩ has fidelity at least η − ε, it is extended by one qubit, which can drop
the fidelity to γ or lower.) However, for z⃗ = 1√

n 1⃗,

⟨πz⃗|ρ|πz⃗⟩ = (1 + 1/n)−n
(√

γ +

√
(n

d)(1− γ)

nd

)2

≈
n large

1
e

(√
γ +

√
(1− γ)/d!

)2
,

which can be larger than η even for d = Θ(log(1/η)/ log log(1/η)). Note that ∥⃗z∥2 = 1 ⩽ 4/η,
so it is close enough to the root in (Tangent Cover), and our algorithm must be able to recognize
this better solution of |πz⃗⟩. This demands knowledge of ρ in a (quite large) Hamming ball
around the root product state. Further, by changing the signs of the |x⟩’s in |ψ⟩, (Tangent Cover)
can encode dense d-CSP instances. This suggests that the right approach is a reduction to
polynomial optimization.

First, we consider solving (Tangent Cover) when Cm is empty. We can reduce this to low-
degree polynomial optimization over the sphere. We start by observing that it suffices to
consider the projection of ρ on basis states of low Hamming weight. Concretely, let Π⩾d be the
projection onto the subspace of Hamming weight at least d = O(1/η + log(1/ε)). Then, we
show that, provided ∥⃗z∥ ⩽ 4/η as in (Tangent Cover),

∥Π⩾d |πz⃗⟩∥ ⩽ ε .

This is a Chernoff bound, since the squared norm is the probability that the n Bernoulli random
variables sums to at least d, where the probabilities come from the z⃗’s (see Lemma 3.10 with
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µ = 4/η). So, it suffices to perform state tomography for ρ on the space of low Hamming
weight vectors ρd = Π<dρΠ<d, which is computationally efficient because this subspace has
dimension O(nd) (Lemma 5.9). We can use ρd in place of ρ in the objective because

|⟨πz⃗| ρ |πz⃗⟩ − ⟨πz⃗| ρd |πz⃗⟩| =
∣∣∣tr(ρ(|πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|Π<d)

)∣∣∣
⩽ ∥|πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|Π<d∥op

⩽ 2∥|πz⃗⟩ −Π<d |πz⃗⟩∥2

= 2∥Π⩾d |πz⃗⟩∥2 ⩽ ε .

Further, once we have our estimate of ρd, the objective function is fully specified explicitly;
the rest of the algorithm is classical. Because ρd is only supported on low Hamming weight,
⟨πz⃗| ρd |πz⃗⟩ is a low-degree polynomial up to a normalization factor:

⟨πz⃗| ρd |πz⃗⟩ =
1

∏i∈[m](1 + |zi|2)︸ ︷︷ ︸
(3).(1)

∑
x,x′∈{0,1}m

⟨x| ρd |x′⟩ (⃗z∗)x (⃗z)x′

︸ ︷︷ ︸
(3).(2)

. (3)

(3).(2) is a degree-2d polynomial in the zi’s and their complex conjugates. Further, when the
|zi|’s are small, we can approximate term (3).(1) by exp

(
−∥z∥2

2
)
, which is a bounded scalar

variable that we can hardcode into our constraints. While the |zi|’s won’t always be small, we
can guess the ones that are large, fix their value and use the above approximation on the rest.
This is where we pick up an ℓ∞ constraint on the zi’s, since we must enforce that entries which
we do not guess are small. This reduces the algorithm to solving problems of the following
form.

max
∥⃗z∥2=1
∥⃗z∥∞⩽µ

p(⃗z) = max
∥⃗z∥2=1
∥⃗z∥∞⩽µ

∑
x,x′∈{0,1}m

⟨x| ρd |x′⟩ (⃗z∗)x (⃗z)x′ .

Optimizing low-degree polynomials over the sphere is known to be hard to approximate up
to polynomial factors in the worst-case, even when the degree is 4 [BBHKSZ12; BGGLT17].
However, in our case, p(⃗z) is not an arbitrary low-degree polynomial, but is quite ‘small’: the
ℓ2 norm of the coefficients ⟨x|ρd|x′⟩ is bounded, since it is ∥ρd∥F ⩽ ∥ρ∥F ⩽ tr(ρ) = 1. We will
show that, in this case, obtaining additive error that scales with ε admits a polynomial time
algorithm. Additive-error approximations to max k-CSPs also admit a similar guarantee.

In the general case, we must also deal with the farness constraints in (Tangent Cover),
dtan(|πz⃗⟩ , |πa⃗⟩) ⩾ 2/η for a small number of |πa⃗⟩’s. Recall that dtan(|πa⃗⟩ , |πz⃗⟩)2 = ∑i∈[n]| zi−ai

1+z∗i ai
|2

by definition. We will not try to directly optimize over these constraints. We use a similar trick
as before and show that when the |zi|’s are small, dtan(|πa⃗⟩ , |πz⃗⟩) ≈ ∥⃗a− z⃗∥2 (see Lemma 3.9).
These constraints essentially only enforce what z⃗ can be in the low-dimensional subspace
spanned by the a⃗’s. So, we can guess the choice of z⃗ on this subspace (in addition to the coordi-
nates for which |zi| is large), and for each guess, solve the problem with the guess hardcoded
into the constraints. Putting all the steps together, we show that we can reduce the problem of
extending the cover to a polynomial optimization problem, where the ℓ2 norm of the coefficients
is bounded by 1, subject to ℓ2 and ℓ∞ constraints.

Optimizing low-degree polynomials over the sphere. We now focus on the algorithmic
problem of optimizing a low-degree polynomial over the sphere subject to ℓ2 and ℓ∞ constraints.

Our results for polynomial optimization can be thought of as analogs of maximizing dense
k-CSPs, only the domain is the sphere instead of the hypercube. The underlying algorithms for
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max k-CSPs are either based on brute-force search over a dimension-independent number of
variables followed by greedily completing the solution or global correlation rounding [MS08;
Yar14; MR17; AGT19]. One may expect the correlation rounding algorithms for max k-CSPs
to generalize straightforwardly to optimize low-degree polynomials over the sphere up to
additive error. However, the existing analysis [MR17] would merely translate to outputting
a product state with fidelity Ω(OPT)− ε, as opposed to OPT− ε. One can also try to extend
the correlation rounding algorithm of Alev, Jeronimo and Tulsiani [AGT19] to the sphere, but
their algorithm obtains a doubly-exponential dependence on k. In contrast, our approach is
closer in spirit to the brute-force style algorithm for max k-CSPs, and allows for additional
ℓ2 and ℓ∞ constraints. Translating our algorithm back to optimizing dense polynomials over
the hypercube, we can show that we obtain yet another algorithm that achieves additive error
guarantees.

To get the key ideas across, we first consider the unconstrained polynomial optimization
problem, reformulated as maximizing the injective norm of a tensor:

max
x∈Cm,∥x⃗∥2=1

⟨T, x⃗⊗k⟩

for a tensor T with ∥T∥F ⩽ 1. While it is hard to obtain a multiplicative approximation to
tensor optimization problems, we show that we can obtain an additive ε · ∥T∥F approximation
in npoly(1/ε) time (see Theorem 6.3 for a formal statement). We begin by observing that there is a
poly(1/ε)-dimensional subspace such that projecting x onto this subspace suffices to obtain an
ε∥T∥F approximation to the optimum objective value. To see this, we can unfold the tensor T
along the first mode to obtain a m×mk−1 matrix M. We can then compute the singular value
decomposition of M and let λ1 ⩾ λ2 ⩾ . . . ⩾ λm ⩾ 0 be the resulting singular values. There are
at most r = ⌈1/ε2⌉ singular values larger than ε · ∥T∥F. Let Π(1)

>ε be the projection on the top-r
subspace of M. Then,∣∣∣〈x⃗, M(vec(x⃗⊗k−1))

〉
−
〈
Π(1)

>ε x⃗, M(vec(x⃗⊗k−1))
〉∣∣∣ ⩽ ε∥T∥F.

Now, we can repeat the same argument for the remaining modes to obtain projectors Π(2)
>ε , . . . , Π(k)

>ε .
Setting Π>ε to project onto the union of the spans of Π(1), . . . , Π(k), we conclude that∣∣∣〈T, x⃗⊗k〉− 〈T, Π>ε x⃗⊗k〉∣∣∣ ⩽ kε .

In short, the polynomial can be approximated by projecting x⃗ onto a small-sized subspace. To solve
this tensor optimization problem, it suffices to brute-force over a fine-enough net on this
constant-dimensional subspace and pick the vector that obtains the maximal value.

In general, we need to deal with an optimization problem that involves a dimension-
independent number of ℓ2 constraints and an ℓ∞ constraint (see Definition 6.2). We handle
the ℓ2 constraints by simply projecting onto the union of the subspace Π and the subspace
corresponding to the span of the ℓ2 constraints. It remains to handle the ℓ∞ constraint, which
takes the form ∥x⃗∥∞ ⩽ µ for some constant µ > 0. Only 1/µ2 of the coordinates can saturate the
ℓ∞ constraint. Since µ > 0 is a constant, we can brute-force over which coordinates saturate the
ℓ∞ constraint. Ultimately, we can still reduce the constrained optimization problem to checking
over a net in a constant-dimensional subspace. We refer the reader to Section 6 for more details.

Hardness for agnostic product tomography. Our lower bound starts from the hardness of
computing (asymmetric) tensor spectral norm for 4-tensors (see Theorem 7.2). In particular,
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for an n× n× n× n tensor T, computing the spectral norm to additive error ∥T∥F/ poly(n)
is NP-hard. We attain our result by reducing tensor optimization to product state learning,
essentially inverting the reduction discussed earlier. The main idea is to set the unknown state
ρ = |ψ⟩⟨ψ| where

|ψ⟩ = 1
∥T∥F

∑
i,j,k,l∈[m]

Tijkl |ei⟩ |ej⟩ |ek⟩ |el⟩ .

Then, we can show that finding the 4m-qubit product state |πx⃗⟩ |πy⃗⟩ |πu⃗⟩ |πv⃗⟩ with optimal
fidelity is essentially equivalent to maximizing the tensor form ⟨T, x⃗ ⊗ y⃗⊗ u⃗⊗ v⃗⟩. The only
additional difficulty is that this equivalence only holds if T is sufficiently flat; our reduction
thus requires an additional step where we embed our input T in a larger space and randomly
rotate it to make all its entries small without changing the optimal value.

Faster algorithms. In light of the lower bound, one can still ask what additional structure
yields faster algorithms. We consider three additional settings: the high-fidelity regime (high
overlap with a product state), a bounded number of choices for each qubit, and matrix-product
states. In all of these settings, we follow the same overall strategy of sweeping over the qubits,
but maintaining a cover becomes significantly easier:

1. In the high-fidelity regime, the cover can be made to be only one state;

2. In the finite-choices setting, we can simply maintain all good product states in the class,
instead of a cover over them;

3. In the MPS setting, we can make our cover one state, though one with a large bond
dimension, in some sense capturing many good product states.

For this overview, we focus on the high-fidelity setting. Here, the optimal solution is unique
and we do not require maintaining a net. Instead, we only need to maintain a single candidate
product state as we sweep across the qubits, performing local updates until convergence.

To illustrate how and why local optimization works, suppose for simplicity that ρ = |ψ⟩⟨ψ|
is a pure state; the mixed state case is similar but involves some additional parameters. Imagine
that |0n⟩ is the current candidate product state (in some appropriately chosen basis), and
consider what happens when we express |ψ⟩ in the low-Hamming weight subspace:

|ψ⟩ = α |0n⟩+ δ |v1⟩+ β |v⩾2⟩ .

Above, we assume without loss of generality that |v1⟩ is a normalized state on the subspace of
Hamming weight 1, |v⩾2⟩ is a normalized state on the subspace of Hamming weight at least 2,
and α, β, δ are all nonnegative reals. It is helpful to express |ψ⟩ this way because δ quantifies local
updates that we can make to improve fidelity. By rotating qubit i of our candidate product state
away from |0⟩, we can increase the product state fidelity from |⟨0n|ψ⟩|2 = α2 to α2 + δ2|⟨ei|v1⟩|2,
where |ei⟩ is the string with 1 in position i and 0s elsewhere. Our goal, then, will be to establish
that α2 is close to OPT whenever δ is small, because it implies that local optimization converges
efficiently: either δ is large, in which case we can increase the candidate fidelity by a substantial
amount, or δ is small, in which case we are near the global optimum.

We prove this by bounding the contributions to product state fidelity from the Hamming
weight 0, 1, and ⩾ 2 subspaces separately. Consider an arbitrary product state |π⟩ that, when
measured in the computational basis, gives |0n⟩ with probability 1− p and anything else with
probability p. We observe (Corollary 4.3) that |π⟩ places at most O(p2) probability on Hamming
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weight 2 or larger, and use this to upper bound the overlap between |π⟩ and |ψ⟩ (this is a
simplified version of Equation (5)):

|⟨π|ψ⟩| ⩽ α(1−Ω(p)) + δ
√

p + O(βp) .

Working out the constants, we find that so long as α2 ⩾ 2/3, the −Ω(αp) term dominates
the O(βp) term, leaving us with |⟨π|ψ⟩| ⩽ α + δ

√
p ⩽ α + δ. So, every product state satisfies

|⟨π|ψ⟩|2 ⩽ (α + δ)2, and therefore OPT ⩽ (α + δ)2.
The above analysis straightforwardly gives rise to a polynomial-time but suboptimal algo-

rithm for finding the closest product state. We briefly summarize the additional tricks that are
required to reduce the sample complexity to linear in n.

First, we observe that divide-and-conquer is more efficient than sweeping through one
additional qubit at a time. So, the basic structure of the learning algorithm (Algorithm 4.19) is:

1. Recursively run the algorithm on the left and right halves of ρ, obtaining product states
|πL⟩ and |πR⟩ that have fidelity at least 5/6 with the respective halves.

2. Take |π⟩ = |πL⟩ ⊗ |πR⟩, which satisfies ⟨π|ρ|π⟩ ⩾ 2/3.

3. Run local optimization on |π⟩ until convergence.

Second, we improve the bound on |⟨π|ψ⟩| when α2 is much larger than 2/3. Namely, we
show the alternative bound

|⟨π|ψ⟩| ⩽ α + O
(

δ2

α2 − 2/3

)
,

which ultimately implies that local optimization needs fewer iterations to converge.
Third, we find that one can make larger improvements to the fidelity by updating all n

qubits simultaneously, rather than one at a time. We take z⃗ ∈ Cn to be the vector defined by
zi = ⟨ei|ρ|0n⟩, which captures the mass that ρ places on Hamming weight 1 that is coherent
with |0n⟩. Then we show that a step from |0n⟩ to |πz⃗/10⟩ increases the fidelity with ρ by Ω

(
∥⃗z∥2

2
)
.

Note that in the pure state case ρ = |ψ⟩⟨ψ|, this z⃗ is precisely αδ |v1⟩, and therefore the fidelity
improvement is Ω(δ2). For comparison, recall that the improvement from a single-qubit update
was only δ2 maxi∈[n]|⟨ei|v1⟩|2, which can be as small as δ2/n.

Finally, we establish that it suffices to obtain a relative ℓ2-error estimate of z⃗ in order to
perform these local updates. In symbols, if we can produce an estimate a⃗ satisfying ∥⃗a− z⃗∥2 ⩽
∥⃗z∥2/3 (say), then we show that |πa⃗/10⟩ also increases the fidelity by Ω

(
∥⃗z∥2

2
)
. This allows us

to cut down some of the cost of the tomography subroutine by varying the error parameter
throughout the algorithm, because we can afford to be sloppier when the step size is large.

2.1 Notation

Throughout, logb is the logarithm base b, and log is shorthand for the natural logarithm base
e ≈ 2.718. The complex conjugate of z ∈ C is denoted z∗. For a function f : R → R, f ′(x)
denotes its derivative at x. An unspecified polynomially-bounded function of n may be written
as poly(n).

We use standard shorthand for tensor products of quantum basis states. So, for example,
|0⟩ ⊗ |1⟩ can be written either as |0⟩ |1⟩ or |01⟩.

[n] is defined as the set of integers {1, 2, . . . , n}. If S ⊆ [n], S denotes its complement in [n].
When ρ is an n-qubit mixed state, we write ρS := trS(ρ) for the reduced state on the qubits
indexed by S.

15



The Hamming weight of a binary string x ∈ {0, 1}n is denoted by |x|. We write |ei⟩ for the
Hamming weight-1 n-qubit computational basis state that has |1⟩ in the ith position and |0⟩
everywhere else, leaving n implicit from context.

Vectors always have arrows over them (e.g. v⃗), unless they represent a (pure) quantum
state, in which case we use ket notation (e.g. |ψ⟩). If v⃗ ∈ Cn, v⃗∗ ∈ Cn is its entrywise complex
conjugate. For matrices A ∈ Cm×n, the conjugate transpose is A† ∈ Cn×m. The Euclidean
(or ℓ2) norm of a vector v⃗ ∈ Cn is denoted by ∥v⃗∥2 :=

√
∑i|vi|2, and the ℓ∞ norm is denoted

by ∥v⃗∥∞ := maxi|vi|. The norms that we use for matrices A ∈ Cm×n are the operator norm
∥A∥op := supv⃗ ̸=0

∥Av⃗∥2
∥v⃗∥2

, the trace norm ∥A∥1 := tr
(√

A† A
)

, and the Frobenius norm ∥A∥F :=√
tr(A† A). We also use ∥A∥F for the Frobenius norm of a tensor A, which is the square root of

the sum of the squared magnitudes of the entries.

3 Parametrization of product states

Definition 3.1 (Product state parametrization). A product state |π⟩ can be described by n
parameters z⃗ ∈ (C∪ {∞})n in the extended complex plane. We use the notation

|πz⃗⟩ =
n⊗

i=1

|0⟩+ zi |1⟩√
1 + |zi|2

.

Note that this parametrization normalizes global phase such that the |0n⟩ amplitude, or more
generally, the non-zero amplitude with lowest Hamming weight, is real. Though we define
this parametrization for z⃗ with entries in the extended complex plane, we will generally work
with z⃗ ∈ Cn for simplicity: our algorithms incur error, so we will always be able to work with
vectors with finite (but possibly very large) entries. However, this limitation is not necessary,
and the diligent reader can extend our results to hold even with parameters at infinity.

3.1 Tangent distance

We now define a distance measure between product states which behaves nicely with respect to
our parametrization, which we call the tangent distance. For the sake of building intuition, we
first consider the case when n = 1:

Definition 3.2 (Tangent distance, n = 1). For z, a ∈ C∪ {∞}, we define the following distance
between 1-qubit states:

dtan(|πz⟩ , |πa⟩) =
∣∣∣ zi − ai

1 + z∗i ai

∣∣∣ .

We also have that d2
tan(|πz⟩ , |πa⟩) = tan2(θ/2) where θ ∈ [0, π] is the angle between the Bloch

sphere points for |πz⟩ and |πa⟩.

Remark 3.3. Presumably the Bloch sphere interpretation is well known but we could not find a
reference. Here is a quick proof: The Bloch sphere point for |πz⟩ is the inverse stereographic
projection of z; namely p⃗z := 1

1+|z|2 (z + z∗, z− z∗, 1− |z|2). From this it follows that cos θ =

p⃗z · p⃗a = 1− 2|z−a|2
(1+|z|2)(1+|a|2) . Now use tan2(θ/2) = 1−cos θ

1+cos θ .
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Definition 3.4 (Tangent distance, general n). For two product states |πz⃗⟩ and |πa⃗⟩, we define
the distance measure dtan(|πz⃗⟩ , |πa⃗⟩) via

d2
tan(|πz⃗⟩ , |πa⃗⟩) =

n

∑
i=1

dtan(|πzi⟩ , |πai⟩)2 =
∥∥∥ z⃗− a⃗

1 + z⃗∗⃗a

∥∥∥2

2
.

Above, we abuse notation by using product and quotient of vectors to denote their entry-wise
product and quotient.

This distance measure has several nice properties: it satisfies dtan(|πz⃗⟩ , |πz⃗⟩) = 0; it is
symmetric; and it is invariant under applying single-qubit unitaries. This last condition is
evident from the Bloch sphere interpretation. However, it is not a metric: the triangle inequality
does not hold, since the distance measure is infinity for orthogonal product states:

dtan(|+⟩ , |0⟩) + dtan(|0⟩ , |−⟩) = 2 < dtan(|+⟩ , |−⟩) = ∞ .

Nevertheless, we can think of this as being approximately a metric when the denominator is
“close to constant”, i.e. when the two product states, and therefore their parameters, are close.

Remark 3.5 (Generalizing to qudits). We can take the following parametrization over qudits,
which takes (d− 1)n parameters z ∈ (C∪ {∞})(d−1)n:

|πz⟩ =
n⊗

i=1

|0⟩+ ∑d
j=1 zi,j |j⟩√

1 + ∥⃗zi∥2
2

.

Here we imagine partitioning z into n many vectors z⃗i of size d− 1. The qudit version of tangent
distance becomes

dtan(|πz⟩ , |πa⟩) =
( n

∑
i=1

∥⃗zi − a⃗i∥2 + ∥⃗zi∥2
2∥⃗ai∥2

2 − |⟨⃗zi, a⃗i⟩|2
|1 + ⟨⃗zi, a⃗i⟩|2

)1/2
,

which we can see by rotating every qudit to reduce to the qubit definition. Notice that this
reduces to the qubit definition when d = 2. Though not immediate, we anticipate no barriers in
generalizing our results to qudits. Generalized versions of the lemmas to follow hold, and we
can run the algorithms and analyses accordingly.

We define tangent distance to be a version of fidelity which behaves more nicely with respect
to the parametrization. Tangent distance is related to fidelity in the following way.

Lemma 3.6 (Relationship between tangent distance and fidelity). For all product states |πz⃗⟩ and
|πa⃗⟩, the following holds:

log
(

1
|⟨πz⃗|πa⃗⟩|2

)
⩽ dtan(|πz⃗⟩ , |πa⃗⟩)2 ⩽

1
|⟨πz⃗|πa⃗⟩|2

− 1 .

Both inequalities are tight.

Proof. First, because both fidelity and dtan are invariant under single-qubit unitaries, it suffices
to show the inequalities for |πa⃗⟩ = |0n⟩. Then, |⟨πz⃗|0n⟩|2 = ∏n

i=1
1

1+|zi |2
and dtan(|πz⃗⟩ , |0n⟩)2 =

∥⃗z∥2
2. Consequently,

log
(

1
|⟨πz⃗|0n⟩|2

)
=

n

∑
i=1

log(1 + |zi|2) ⩽
n

∑
i=1
|zi|2 = dtan(|πz⃗⟩ , |0n⟩)2

⩽
n

∏
i=1

(1 + |zi|2)− 1 =
1

|⟨πz⃗|0n⟩|2 − 1 .

The first inequality is tight for z⃗ = 0n and the right inequality is tight for z⃗ = (∞, 0n−1). ♦
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The approximation in Lemma 3.6 can be made tighter when z⃗ and a⃗ are closer together. For
simplicity, we state the following lemma when a⃗ = 0n.

Lemma 3.7 (Approximation of dtan at small distances). For a vector z⃗ ∈ Cn,

e−dtan(|πz⃗⟩,|0n⟩)2
⩽

n

∏
i=1

1
1 + |zi|2

⩽ e−dtan(|πz⃗⟩,|0n⟩)2+∑n
i=1|zi |4 .

Note that ∏n
i=1

1
1+|zi |2

= |⟨πz⃗|0n⟩|2.

Proof. The first inequality is equivalent to the first inequality in Lemma 3.6. For the second
inequality, we use that, for x ⩾ 0,

e−x ⩽
1

1 + x
⩽ 1− x + x2 ⩽ e−x+x2

.

So, this gives us that

n

∏
i=1

1
1 + |zi|2

⩽
n

∏
i=1

e−|zi |2+|zi |4 = e−dtan(|πz⃗⟩,|0n⟩)2+∑n
i=1|zi |4 . ♦

As a corollary, we can also relate tangent distance to trace distance.

Corollary 3.8. For z⃗, a⃗ ∈ Cn, 1
2∥|πz⃗⟩⟨πz⃗|− |πa⃗⟩⟨πa⃗|∥1 = ∥|πz⃗⟩⟨πz⃗|− |πa⃗⟩⟨πa⃗|∥op ⩽ dtan(|πz⃗⟩ , |πa⃗⟩).

Proof. The equality holds because |πz⃗⟩⟨πz⃗| − |πa⃗⟩⟨πa⃗| is traceless and rank two. The inequality
holds because

1
2
∥|πz⃗⟩⟨πz⃗| − |πa⃗⟩⟨πa⃗|∥1 ⩽

√
1− |⟨πz⃗|πa⃗⟩|2

⩽
√

1− e−dtan(|πz⃗⟩,|πa⃗⟩)2

⩽ dtan(|πz⃗⟩ , |πa⃗⟩) ,

where the first inequality is Fuchs–van de Graaf, the second is Lemma 3.6, and the third is
1 + x ⩽ ex. ♦

We can further simplify dtan to a simple ℓ2 norm when z⃗ and a⃗ are close entry-wise.

Lemma 3.9. Let z⃗, a⃗ ∈ Cn.Then∣∣∣dtan(|πz⃗⟩ , |πa⃗⟩)− ∥⃗z− a⃗∥2

∣∣∣ ⩽ dtan(|πz⃗⟩ , |πa⃗⟩)(max
i
|zi||ai|) .

Proof. Consider a single qubit i. Then,∣∣∣ zi − ai

1 + z∗i ai
− (zi − ai)

∣∣∣ = ∣∣∣ zi − ai

1 + z∗i ai

∣∣∣|1− (1 + z∗i ai)| =
∣∣∣ zi − ai

1 + z∗i ai

∣∣∣|zi||ai| . (4)

So, we can conclude∣∣∣dtan(|πz⃗⟩ , |πa⃗⟩)− ∥⃗z− a⃗∥2

∣∣∣ ⩽ ∥∥∥ z⃗− a⃗
1 + z⃗∗⃗a

− (⃗z− a⃗)
∥∥∥

2
⩽ dtan(|πz⃗⟩ , |πa⃗⟩)(max

i
|zi||ai|) . ♦
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3.2 Approximation lemmas

Lemma 3.10 (Low-weight truncation of product states). For a product state |πz⃗⟩, let µ =

∑n
i=1

|zi |2
1+|zi |2

. Then for c ⩽ µ and d ⩾ µ,

∥Π⩾d |πz⃗⟩∥2
2 ⩽ e−d log(d/µ)+(d−µ) ,

∥Π⩽c |πz⃗⟩∥2
2 ⩽ e−(2µ−c) log(2−c/µ)+(µ−c) ,

where Π⩾d is the projection onto computational basis states |b⟩ such that |b| ⩾ d, and similarly for Π⩽c.

Proof. Let pi =
|zi |2

1+|zi |2
be the probability that qubit i of |πz⃗⟩ outputs |1⟩ when measured in the

computational basis. Consider n independent Bernoulli random variables Z1, . . . , Zn, where
Pr[Zi = 1] = pi. Then, because the qubits of πz⃗ are uncorrelated,

∥Π⩾k |πz⃗⟩∥2
2 = Pr[Z1 + · · ·+ Zn ⩾ k] .

Let µ = E[Z1 + · · ·+ Zn] = p1 + · · ·+ pn. By Bennett’s inequality [BLM13, Theorem 2.9], for
any t ⩾ 0,

Pr
[ n

∑
i=1

(Zi − pi) ⩾ t
]
⩽ e−µ((1+t/µ) log(1+t/µ)−t/µ) = e−(t+µ) log(1+t/µ)+t .

The same bound holds on the other tail:

Pr
[ n

∑
i=1

(Zi − pi) ⩽ −t
]
⩽ e−(t+µ) log(1+t/µ)+t .

The statement follows upon taking d = µ + t in the first inequality and c = µ − t in the
second. ♦

4 High-fidelity product state learning

In this section, we give a simple polynomial-time algorithm for product state agnostic learning
in the high signal-to-noise regime, where the fidelity of the unknown state ρ with the closest
product state |π⟩ is sufficiently close to 1. The algorithm operates by local optimization, where
a candidate product state approximation is updated on the Hamming weight-1 subspace until
convergence. We argue this algorithm’s correctness by showing that once all of the local updates
are sufficiently small, the algorithm must be close to a global optimum. The analysis involves
bounding the optimal product state fidelity maxproduct |π⟩ ⟨π|ρ|π⟩ in terms of the projection of ρ

onto the subspace of Hamming weight 0 or 1.

4.1 Properties of product distributions

We begin by showing some simple concentration bounds on the Hamming weight of a product
distribution.

Lemma 4.1. Let π be a product distribution over {0, 1}n, and let p0 = Prx∼π[x = 0n]. Then

Prx∼π[|x| = 1] ⩾ −p0 log p0 ,

with the understanding that 0 log 0 = 0.
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Proof. Let ai = Prx∼π[xi = 0]. If any ai are equal to 0, we have p0 = 0 and the lemma is trivial.
Otherwise, assuming all ai are strictly positive,

Prx∼π[|x| = 1] =
n

∑
i=1

(1− ai)∏
j ̸=i

aj

=
n

∑
i=1

1− ai

ai

n

∏
j=1

aj

= p0

n

∑
i=1

1− ai

ai

⩾ p0

n

∑
i=1

log(1/ai) (x− 1 ⩾ log x)

= −p0 log

(
n

∏
i=1

ai

)
= −p0 log p0 . ♦

Next, we prove a useful upper bound on the quantity p0 log p0 appearing in the previous
lemma.

Lemma 4.2. For all p ∈ [0, 1],

1− p + p log p ⩽ 2(1−√p)2 ,

with the understanding that 0 log 0 = 0.

Proof. Define
f (p) := 2(1−√p)2 − 1 + p− p log(p) .

Notice that f (1) = 0. Moreover, the derivative of f satisfies:

f ′(p) = 2− 2
√

p
− log p ⩽ 0 ,

because 1− 1
x ⩽ log(x) for all x > 0 (substituting x =

√
p). So, f is decreasing on [0, 1], and

therefore f (p) ⩾ 0 for all p ∈ [0, 1], which implies the lemma. ♦

Combining the previous two lemmas gives an upper bound on the probability assigned by
a product distribution to strings of Hamming weight at least 2.

Corollary 4.3. Let π be a product distribution over {0, 1}n, and let p0 = Prx∼π[x = 0n]. Then

Prx∼π[|x| ⩾ 2] ⩽ 2(1−√p0)
2 .

Proof. Follows from Lemma 4.1 and Lemma 4.2. ♦

4.2 Characterizing optimal product approximations

Proved in this section is the theorem below, which is the heart of the algorithm’s correctness.

Theorem 4.4. Consider an arbitrary quantum state |ψ⟩, which we express in the form

|ψ⟩ = (α |0n⟩+ δ |v1⟩+ β |v⩾2⟩) |g⟩+ γ |⊥⟩ .

Assume without loss of generality that
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• α, β, δ, and γ are all real and nonnegative,

• |v1⟩, |v⩾2⟩, |g⟩, and |⊥⟩ are unit vectors,

• |v1⟩ is supported only on strings of Hamming weight 1,

• |v⩾2⟩ is supported only on strings of Hamming weight 2 or larger, and

• |⊥⟩ is orthogonal to all states beginning with |0n⟩ or ending with |g⟩.

Suppose further that α2 = 2/3 + c for some c ⩾ 0. Then for all product states |π⟩ on n qubits:

∥(⟨π| ⊗ I) |ψ⟩∥2
2 ⩽

(
α + min

{
δ,

√
2
27

δ2

c

})2

.

Before establishing this theorem, let us explain how to interpret it. Suppose we are searching
for the best product state approximation to the leftmost n qubits of some state |ψ⟩. Our current
candidate for the best product state is |0n⟩ (in some appropriately chosen product basis), whose
fidelity with the leftmost n qubits is currently α2 = 2/3 + c.

First consider the special case where |ψ⟩ itself is an n-qubit pure state, in which case we may
take |g⟩ = 1 and γ = 0 to write

|ψ⟩ = α |0n⟩+ δ |v1⟩+ β |v⩾2⟩

as a sum over basis states of Hamming weight 0, 1, and 2 or greater. Then, the theorem says
that if |ψ⟩’s support on Hamming weight 1 is small (as captured by δ), |0n⟩ must approximately
maximize the product state fidelity with |ψ⟩.

In the general case, where |ψ⟩ has more than n qubits, the theorem similarly shows that |0n⟩
is an approximate maximizer of product fidelity, but under a slightly different assumption: that
|ψ⟩ places small support on states of Hamming weight 1 that are coherent with |0n⟩ on the leftmost
n qubits. In other words, |ψ⟩may place large mass on Hamming weight 1 in |⊥⟩, but this does
not affect the bound on product state fidelity.

Now we proceed towards the proof. We first establish two quantitative bounds, whose
importance will become clear in the proof of Theorem 4.4.

Lemma 4.5. Let p, β, γ, and r be nonnegative reals satisfying 0 ⩽ p ⩽ 1, β2 + γ2 ⩽ 1/3, and
r ⩾
√

2/3. Then:(
r
(

1− p
2

)
+

β
√

2
2

p

)2

+ γ2 p ⩽

(
r
(

1− p
2

)
+

√
β2 + γ2

√
2

2
p

)2

.

Proof. Expanding out, the desired inequality becomes

r2
(

1− p
2

)2
+ β
√

2rp
(

1− p
2

)
+

β2

2
p2 + γ2 p

⩽ r2
(

1− p
2

)2
+
√

β2 + γ2
√

2rp
(

1− p
2

)
+

β2 + γ2

2
p2 ,

which considerably simplifies to

γ2 p
(

1− p
2

)
⩽
√

β2 + γ2
√

2rp
(

1− p
2

)
− β
√

2rp
(

1− p
2

)
.
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Factoring out p
(
1− p

2

)
⩾ 0, it suffices to show that

γ2 ⩽ r
√

2
(√

β2 + γ2 − β

)
.

We can assume henceforth that β and γ are both strictly positive, because the inequality above
is easily verified if either are zero. Multiplying both sides by

√
β2 + γ2 + β is equivalent to

γ2
(√

β2 + γ2 + β

)
⩽ r
√

2γ2 ,

and then we divide by γ2 to obtain √
β2 + γ2 + β ⩽ r

√
2 .

This is implied by the assumptions of the lemma because the left side is at most 2√
3
, and the

right side is at least 2√
3
. ♦

Lemma 4.6. Suppose that α2 = 2/3 + c for some c ⩾ 0. Then:

α−
√

2− 2α2 ⩾ c

√
27
8

.

Proof. In other words, we wish to show that

f (α) := α−
√

2− 2α2 −
√

27
8

(
α2 − 2

3

)
⩾ 0 .

Consider the first and second derivatives of f :

f ′(α) = 1 +
2α√

2− 2α2
−
√

27
2

α, f ′′(α) =
√

2
(1− α2)3/2 −

√
27
2

.

A simple calculation shows that f ′′(
√

2/3) > 0, and f ′′(α) is clearly increasing in α, so f ′′(α) > 0
for all α ⩾

√
2/3. f ′(

√
2/3) = 0, and f ′(α) is increasing in α as a consequence of the positive

second derivative, so f ′(α) ⩾ 0 for all α ⩾
√

2/3. Hence, f is non-decreasing for α ⩾
√

2/3.
Since f (

√
2/3) = 0, the lemma follows. ♦

Proof of Theorem 4.4. Write

|π⟩ = √p0 |0n⟩+√p1 |w1⟩+
√

p⩾2 |w⩾2⟩ ,

where p0, p1, and p⩾2 are probabilities summing to 1, |w1⟩ is supported over strings of weight 1,
|w⩾2⟩ is supported over strings of weight at least 2, and both |w1⟩ and |w⩾2⟩ are unit vectors.
Then:

∥(⟨π| ⊗ I) |ψ⟩∥2
2 = ∥(α√p0 + δ

√
p1 ⟨w1|v1⟩+ β

√
p⩾2 ⟨w⩾2|v⩾2⟩) |g⟩+ γ(⟨π| ⊗ I) |⊥⟩∥2

2

= ∥(α√p0 + δ
√

p1 ⟨w1|v1⟩+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩) |g⟩∥2
2 + ∥γ(⟨π| ⊗ I) |⊥⟩∥2

2

= |α√p0 + δ
√

p1 ⟨w1|v1⟩+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩|2 + γ2∥(⟨π| ⊗ I) |⊥⟩∥2
2

⩽ (α
√

p0 + δ
√

p1 + β
√

p⩾2)
2 + γ2(1− p0) ,

where in the second line we used the Pythagorean theorem which is valid because |⊥⟩ has no
support on |g⟩, and in the last line we applied the triangle inequality and the assumption that
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|⊥⟩ has no support on |0n⟩. We first turn our attention to bounding (the square root of) the left
term. Let p = p1 + p⩾2 be the probability that the measurement distribution of |π⟩ assigns to
strings of Hamming weight 1 or more. Then:

α
√

p0 + δ
√

p1 + β
√

p⩾2 ⩽ α
√

p0 + δ
√

p1 + β
√

2(1−√p0) (Corollary 4.3)

= (α− β
√

2)
√

p0 + δ
√

p1 + β
√

2

⩽ (α− β
√

2)
√

1− p + δ
√

p + β
√

2 (p0 = 1− p, p1 ⩽ p)

⩽ (α− β
√

2)
(

1− p
2

)
+ δ
√

p + β
√

2 (
√

1− p ⩽ 1− p
2

, α ⩾ β
√

2)

= α
(

1− p
2

)
+

β
√

2
2

p + δ
√

p .

Substituting, we find that

∥(⟨π| ⊗ I) |ψ⟩∥2
2 ⩽

(
α
(

1− p
2

)
+

β
√

2
2

p + δ
√

p

)2

+ γ2 p

⩽

(
α
(

1− p
2

)
+

√
β2 + γ2

√
2

2
p + δ

√
p

)2

(Lemma 4.5)

⩽
(

α− p
2

(
α−

√
2− 2α2

)
+ δ
√

p
)2

(α2 + β2 + γ2 ⩽ 1)

⩽

(
α− p

√
27
32

c + δ
√

p

)2

. (Lemma 4.6) (5)

The use of Lemma 4.5 in the second line is by choosing r =
α(1− p

2 )+δ
√

p
1− p

2
⩾ α ⩾

√
2/3. (To give

some interpretation for this use of Lemma 4.5, it effectively says that we can assume without
loss of generality that γ = 0, by placing all of its amplitude on β instead.) To bound this last
quantity, we first observe that

p

√
27
32

c ⩽

√
3
32

(0 ⩽ p ⩽ 1, 0 ⩽ c ⩽ 1/3)

<

√
2
3

⩽ α ,

and therefore the expression inside the parentheses is always positive. So, it suffices to upper
bound what is in the parentheses. Next, we note that√

2
27

δ2

c
− δ
√

p + p

√
27
32

c ⩾ 0 ,

because the discriminant of the left side (as a quadratic function of δ) is 0. Plugging into the
bound obtained in Equation (5) gives

∥(⟨π| ⊗ I) |ψ⟩∥2
2 ⩽

(
α +

√
2
27

δ2

c

)2

.

Alternatively, we can take
∥(⟨π| ⊗ I) |ψ⟩∥2

2 ⩽ (α + δ)2

by using 0 ⩽ p ⩽ 1. ♦
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We conclude this subsection by proving a version of Theorem 4.4 for mixed states.

Corollary 4.7. For an n-qubit density matrix ρ, define z⃗ ∈ Cn by

zi = ⟨ei|ρ|0n⟩ .

If ⟨0n|ρ|0n⟩ = 2/3 + c for some c > 0, then for all product states |π⟩:

⟨π|ρ|π⟩ ⩽ ⟨0n|ρ|0n⟩+ min
{

3∥⃗z∥2,
∥⃗z∥2

2
c

}
.

Proof. Take |ψ⟩ to be a purification of ρ in the form of Theorem 4.4:

|ψ⟩ = (α |0n⟩+ δ |v1⟩+ β |v⩾2⟩) |g⟩+ γ |⊥⟩ .

Observe that

δ2 =
n

∑
i=1

|⟨ei|ρ|0n⟩|2
α2 =

∥⃗z∥2
2

α2 ,

because zi = ⟨ei|ρ|0n⟩ = αδ ⟨ei|v1⟩. Hence:

⟨π|ρ|π⟩ = ∥(⟨π| ⊗ I) |ψ⟩∥2
2

⩽

(
α +
∥⃗z∥2

α

)2

(Theorem 4.4)

= α2 + 2∥⃗z∥2 +
∥⃗z∥2

2
α2

= α2 +

(
2 +

δ

α

)
∥⃗z∥2

⩽ α2 + 3∥⃗z∥2 . (δ ⩽
√

1/3, α ⩾
√

2/3)

We can also use the other half of Theorem 4.4 to obtain:

⟨π|ρ|π⟩ = ∥(⟨π| ⊗ I) |ψ⟩∥2
2

⩽

(
α +

√
2
27
∥⃗z∥2

2
α2c

)2

(Theorem 4.4)

⩽

(
α +
∥⃗z∥2

2
3αc

)2

(α ⩾
√

2/3)

= α2 +
2∥⃗z∥2

2
3c

+
∥⃗z∥4

2
9α2c2 .

To complete the proof, assume without loss of generality that ∥z∥
2
2

c ⩽ 1/3, as otherwise the
statement is trivial. Then:

⟨π|ρ|π⟩ ⩽ α2 +
2∥⃗z∥2

2
3c

+
∥⃗z∥2

2
27α2c

⩽ α2 +
2∥⃗z∥2

2
3c

+
∥⃗z∥2

2
18c

(α2 ⩾ 2/3)

⩽ α2 +
∥z∥2

2
c

. ♦
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4.3 Bounding local updates

Corollary 4.7 shows that the maximum product fidelity can be bounded in terms of the ℓ2 norm
of a certain vector z⃗, where z⃗ captures mass that ρ places coherently between |0n⟩ and strings of
Hamming weight 1. In this subsection, we show a sort of converse: that there always exists a
product state |π⟩ whose increase in fidelity compared to |0n⟩ is proportional to ∥⃗z∥2

2. So, we can
use z⃗ to guide our local optimization algorithm until convergence.

We first need a claim showing that ∥⃗z∥2 is bounded:

Claim 4.8. For an n-qubit density matrix ρ, define z⃗ ∈ Cn by

zi = ⟨ei|ρ|0n⟩ .

Then ∥⃗z∥2 ⩽ 1/2.

Proof. Following the proof of Corollary 4.7, let |ψ⟩ to be a purification of ρ in the form of
Theorem 4.4:

|ψ⟩ = (α |0n⟩+ δ |v1⟩+ β |v⩾2⟩) |g⟩+ γ |⊥⟩ .

Recall that

δ2 =
n

∑
i=1

|⟨ei|ρ|0n⟩|2
α2 =

∥⃗z∥2
2

α2 ,

and therefore ∥⃗z∥2 = αδ. Since α2 + δ2 ⩽ 1, ∥⃗z∥2 is maximized when α = δ =
√

2, and the claim
follows. ♦

Now we show how to make local updates based on z⃗. To understand the theorem below,
think of a⃗ as a “good enough” approximation to z⃗. (We require an approximation because
quantum tomography algorithms are necessarily non-exact.) Then the theorem shows that,
using the product state parametrization from Definition 3.1, moving in the direction of a⃗ always
increases the fidelity by an amount proportional to ∥⃗a∥2

2.

Theorem 4.9. For an n-qubit density matrix ρ, define z⃗ ∈ Cn by

zi = ⟨ei|ρ|0n⟩ .

Then if ∥⃗a− z⃗∥2 ⩽ ∥⃗a∥2/2,

⟨πa⃗/10|ρ|πa⃗/10⟩ ⩾ ⟨0n|ρ|0n⟩+ ∥⃗a∥
2
2

20
.

Proof. Consider a purification |ψ⟩ of ρ in a form similar to Theorem 4.4:

|ψ⟩ =
(

α |0n⟩+
n

∑
i=1

⟨ei|ρ|0n⟩
α

|ei⟩+ β |v⩾2⟩
)
|g⟩+ γ |⊥⟩ .

We assume without loss of generality that

• α =
√
⟨0n|ρ|0n⟩ and β and γ are nonnegative reals,

• |v⩾2⟩, |g⟩, and |⊥⟩ are unit vectors,

• |v⩾2⟩ is supported only on strings of Hamming weight 2 or larger, and

• |⊥⟩ is orthogonal to all states beginning in |0n⟩ or ending in |g⟩.
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Let us express |πa⃗/10⟩ in the form:

|πa⃗/10⟩ =
√

p0 |0n⟩+√p1 |w1⟩+
√

p⩾2 |w⩾2⟩ ,

where p0, p1, and p⩾2 are probabilities summing to 1, |w1⟩ is supported over strings of weight 1,
|w⩾2⟩ is supported over strings of weight at least 2, and both |w1⟩ and |w⩾2⟩ are unit vectors.
We note that:

⟨πa⃗/10|ei⟩ =
a∗i /10

∏n
j=1

√
1 + |ai/10|2

=
a∗i
√

p0

10
.

So, the fidelity is equal to:

⟨πa⃗/10|ρ|πa⃗/10⟩ = ∥(⟨πa⃗/10| ⊗ I) |ψ⟩∥2
2

=

∥∥∥∥∥
(

α
√

p0 +
n

∑
i=1

a∗i
√

p0

10
⟨ei|ρ|0n⟩

α
+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩
)
|g⟩+ γ(⟨π| ⊗ I) |⊥⟩

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

α
√

p0 +

√
p0 ⟨⃗a, z⃗⟩
10α

+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩
)
|g⟩+ γ(⟨π| ⊗ I) |⊥⟩

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

α
√

p0 +

√
p0 ⟨⃗a, z⃗⟩
10α

+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩
)
|g⟩
∥∥∥∥∥

2

2

+ ∥γ(⟨π| ⊗ I) |⊥⟩∥2
2

by the Pythagorean theorem, because |⊥⟩ has no support on |g⟩. We can lower bound this by:

⟨πa⃗/10|ρ|πa⃗/10⟩ ⩾
∣∣∣∣∣α√p0 +

√
p0 ⟨⃗a, z⃗⟩
10α

+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩
∣∣∣∣∣
2

=

∣∣∣∣∣α√p0 +

√
p0
(
∥⃗a∥2

2 − ⟨⃗a, a⃗− z⃗⟩
)

10α
+ β
√

p⩾2 ⟨w⩾2|v⩾2⟩
∣∣∣∣∣
2

⩾

(
α
√

p0 +

√
p0
(
∥⃗a∥2

2 − |⟨⃗a, a⃗− z⃗⟩|
)

10α
− β
√

p⩾2

)2

(Triangle inequality)

⩾

(
α
√

p0 +

√
p0
(
∥⃗a∥2

2 − ∥⃗a∥2∥⃗a− z⃗∥2
)

10α
− β
√

p⩾2

)2

(Cauchy-Schwarz)

⩾

(
α
√

p0 +

√
p0∥⃗a∥2

2

20α
− β
√

p⩾2

)2

(∥⃗a− z⃗∥2 ⩽ ∥⃗a∥2/2)

⩾

(
α
√

p0 +

√
p0∥⃗a∥2

2

20α
− β
√

2(1−√p0)

)2

(Corollary 4.3)

⩾

(
αp0 +

p0∥⃗a∥2
2

20α
− β
√

2(1− p0)

)2

. (p0 ⩽ 1)

Let us now obtain some bounds on p0. From Lemma 3.7, we know that

p0 =
n

∏
i=1

1
1 + |ai/10|2 ⩾ e−dtan(|πa⃗/10⟩,|0n⟩)2

= e−∥⃗a/10∥2
2 ⩾ 1− ∥⃗a∥

2
2

100
.

By Claim 4.8, because ∥⃗z∥2 ⩽ 1
2 , we know that

∥⃗a∥2 ⩽ ∥⃗z∥2 + ∥⃗a− z⃗∥2 ⩽
1 + ∥⃗a∥2

2
,
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and therefore ∥⃗a∥2 ⩽ 1. This further implies p0 ⩾ 0.99. Using these two bounds on p0, we
obtain the desired lower bound:

⟨πa⃗/10|ρ|πa⃗/10⟩ ⩾
(

α

(
1− ∥⃗a∥

2
2

100

)
+

0.99∥⃗a∥2
2

20α
− β
√

2
∥⃗a∥2

2
100

)2

⩾

(
α +

0.0495
α
∥⃗a∥2

2 −
1 +
√

2
100

∥⃗a∥2
2

)2

(α, β ⩽ 1)

⩾

(
α +

0.0395−
√

2/100
α

∥⃗a∥2
2

)2

(α ⩽ 1)

⩾

(
α +

1
40α
∥⃗a∥2

2

)2

⩾ α2 +
∥⃗a∥2

2
20

= ⟨0n|ρ|0n⟩+ ∥⃗a∥
2
2

20
. ♦

4.4 Local optimization algorithms

Let’s briefly take a step back to show the power of the combination of Corollary 4.7 and
Theorem 4.9. Say that (in some appropriately chosen basis), we’ve found that

⟨0n|ρ|0n⟩ = 2/3 + c .

Suppose that the largest fidelity achievable with ρ by any product state is 2/3 + D. Then
Corollary 4.7 shows that

2/3 + D ⩽ 2/3 + c + min
{

3∥⃗z∥2,
∥⃗z∥2

2
c

}
,

or equivalently

∥⃗z∥2
2 ⩾ max

{
(D− c)2

9
, c(D− c)

}
,

which further implies

∥⃗z∥2
2 ⩾

D(D− c)
10

.

To simplify things, imagine that we were able to learn z⃗ exactly. Then Theorem 4.9 shows that
we can find a product state |π⟩ whose fidelity with ρ is at least

⟨π|ρ|π⟩ ⩾ 2/3 + c +
∥z∥2

2
20

+ .

Combining these two shows that after a single local update according to Theorem 4.9, c increases
at least as fast as

c→ c +
D(D− c)

200
.

If we make such local updates repeatedly, the fidelity of our product state with ρ converges
towards 2/3+ D exponentially quickly. This is the high-level idea behind our local optimization
procedure, Algorithm 4.11 below.

We first take a small detour to show how to learn an approximation of z⃗ in a sample- and
time-efficient manner, via a simple modification of the classical shadows protocol [HKP20].

27



Lemma 4.10. For an n-qubit density matrix ρ, define z⃗ ∈ Cn by

zi = ⟨ei|ρ|0n⟩ .

Then there is a procedure to find a⃗ satisfying ∥⃗a− z⃗∥2 ⩽ ε with probability 1− δ that uses O( n
ε2 log 1

δ )

copies of ρ and O
(

n2 log n
ε2 log 1

δ + n log2 1
δ

)
time.

Proof. Note that the real part of z⃗ is

Re(zi) = tr
(
|0n⟩⟨ei|+ |ei⟩⟨0n|

2
ρ

)
,

and the imaginary part is

Im(zi) = tr
(

ρ
i |0n⟩⟨ei| − i |ei⟩⟨0n|

2
ρ

)
.

So, it suffices to obtain an ℓ2-error estimate of the 2n observables{
|0n⟩⟨ei|+ |ei⟩⟨0n|

2
,

i |0n⟩⟨ei| − i |ei⟩⟨0n|
2

}
i∈[n]

,

which we will call O1, . . . , O2n.
For some N and K that we choose later, we will use NK copies of ρ to produce estimates

ôi(N, K) of each oi = tr(Oiρ). Our success criterion will then be

2n

∑
i=1

(oi − ôi(N, K))2 ⩽ ε2 .

To do so, we use the classical shadows framework of [HKP20]. Consider measuring ρ in a
random Clifford basis U, obtaining outcome |b̂⟩. Following [HKP20, Eqs. (S16) and (S5)], we
define

ρ̂ := (2n + 1)U† |b̂⟩⟨b̂|U − I

to be the classical shadow, and
ôi = tr(Oiρ̂)

the estimator corresponding to Oi. The key fact shown in [HKP20, Lemma 1 and Eq. (S16)] is

E[ôi] = oi and Var[ôi] ⩽ 3 tr(Oi)
2 =

3
2

.

So, the expected sum of squared deviations is at most:

E

[
2n

∑
i=1

(oi − ôi)
2

]
=

2n

∑
i=1

E
[
(oi − ôi)

2] ⩽ 3n .

If we take N classical shadows ρ̂1, . . . , ρ̂N and compute the mean of their estimators, as
in [HKP20, Eq. (S11)]:

ôi(N, 1) :=
1
N

N

∑
j=1

tr(Oiρ̂j) ,

the expected sum of squared deviations is decreased by a factor of N:

E

[
2n

∑
i=1

(oi − ôi(N, 1))2

]
⩽

3n
N

.
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Choosing N = n
27ε2 , by Markov’s inequality we will have

Pr

[
2n

∑
i=1

(oi − ôi(N, 1))2 ⩽
ε2

3

]
⩾

2
3

.

To boost the success probability from 2/3 to 1− δ, we can use a median-of-means trick by letting
⃗̂o(N, K) be the “median” of K = O(log 1

δ ) independent samples from ⃗̂o(N, 1); see for exam-
ple [HKOT23, Proposition 2.4]. (Note: it is important that the “median” in this case is performed
with respect to the entire vectors ⃗̂o(N, 1) rather than entrywise on ôi(N, 1); see [HKOT23] for
details. The important feature is that the measure of error, ℓ2 distance, is a metric.)

It remains to bound the runtime. Naively, operating on the classical shadows takes exponen-
tial time. However, because all of the observables are supported only the subspace of Hamming
weight 0 or 1, we can encode the information about this subspace into a register of just O(log n)
qubits and perform the classical shadows there. For each sample of ρ, we append a register
of 1 + ⌈log2(n + 1)⌉ qubits initialized to |0⟩. We coherently set the first appended qubit to |1⟩
conditioned on having Hamming weight 0 or 1 in the n-qubit register. Then, conditioned on
having Hamming weight 0 or 1, we populate the remainder of the register with the binary
representation of the qubit that was set to |1⟩, or zero if no such qubit exists. Now we can take
the classical shadows entirely within this O(log n)-qubit register.

Mapping ρ into this O(log n)-qubit register takes O(n log n) time per classical shadow. Next,
sampling the random Clifford U and then measuring to get |b̂⟩ takes O(log2 n) time per classical
shadow [Van21]. We then compute the entire amplitude vector of U† |b̂⟩ in CO(n), which
takes time O(n log n) per classical shadow [SSY23, Algorithm 2]. Since the Oi’s are sparse,
computing each ôi = tr(Oiρ̂) takes O(1) time by using U† |b̂⟩ as a lookup table. Finally, as noted
in [HKOT23, Proposition 2.4], the “median-of-means procedure” takes O(K2) times the cost of
computing the distance between two vectors ⃗̂o(N, 1), for a total of O(K2n) time.4 The overall
runtime is therefore:

O(NK(n log n) + K2n) = O
(

n2 log n
ε2 log

1
δ
+ n log2 1

δ

)
. ♦

We remark that, instead of the lemma above, one could simply appeal to [HKP20, Theorem
1] as a black box to estimate each zi to additive error

√
ε
n . However, our approach saves a log(n)

factor in the sample complexity because we only need to approximate z⃗ in ℓ2 distance, rather
than ℓ∞.

We can now state our algorithm for optimizing toward a global maximizer of product state
fidelity.

4O(K2n) is a worst-case bound, but the average-case time complexity is easily seen to be O(Kn). We believe that
a more careful accounting of this factor over the iterations of Algorithm 4.11 could remove the log2 1

δ factors that
appear in the runtime bounds later in this section.
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Algorithm 4.11. (Local product state optimization).

Input: Copies of an n-qubit state ρ, an n-qubit product state |π⟩, ε ∈ (0, 1/3], δ ∈ (0, 1),
C ∈ [0, 1/3]

Promise: ⟨π|ρ|π⟩ ⩾ 2/3, and maxproduct |π′⟩ ⟨π′|ρ|π′⟩ ⩾ 2/3 + C

Output: A product state |π⟩ satisfying ⟨π|ρ|π⟩ ⩾ maxproduct |π′⟩ ⟨π′|ρ|π′⟩ − ε with proba-
bility at least 1− δ

Procedure:
1: C′ := max{ε, C}
2: m :=

⌈ 1
2 log

( 90
C′ε

)⌉
3: loop
4: Find a product unitary U such that U |π⟩ = |0n⟩
5: Define z⃗ by zi = ⟨ei|UρU†|0n⟩ for i ∈ [n]
6: for λ = 1, . . . , m do
7: ℓλ := m + 1− λ

8: δλ := δ2−ℓλ

(⌈
5εe2m⌉+ ⌈ 900ℓλ

C′

⌉)−1

9: Use Lemma 4.10 to find a⃗ satisfying ∥⃗a− z⃗∥2 ⩽ e−λ with prob. 1− δλ

10: if ∥⃗a∥2 ⩾ 2e−λ then
11: |π⟩ := U† |πa⃗/10⟩
12: Exit for-loop
13: else if λ = m then
14: return |π⟩

We note that the parameter C is effectively optional: one can always set C = 0 and the
algorithm will be correct. However, the algorithm becomes more efficient when C is larger.

We will show the correctness of Algorithm 4.11 in a series of smaller steps. First we lower
bound the improvement from updates:

Claim 4.12. In a given non-terminating iteration of the outer loop of Algorithm 4.11, if Line 9

does not err, then ⟨π|ρ|π⟩ increases by at least ∥⃗a∥
2
2

20 .

Proof. |π⟩ only changes in Line 11, so consider an iteration in which the algorithm reaches
Line 11, and therefore ∥⃗a∥2 ⩾ 2e−λ ⩾ 2∥⃗a− z⃗∥2 for some λ. Then we may appeal to Theorem 4.9
to conclude that

⟨πa⃗/10|UρU†|πa⃗/10⟩ − ⟨π|ρ|π⟩ = ⟨πa⃗/10|UρU†|πa⃗/10⟩ − ⟨0n|UρU†|0n⟩

⩾
∥⃗a∥2

2
20

. ♦

The helper lemma below will be used to show that the product state fidelity converges to
within ε of the optimum in roughly O

(
log 1

ε

)
iterations of the outer loop.

Lemma 4.13. Let {xi}i∈N be a sequence satisfying x0 ⩾ c ⩾ 0 and

xi+1 ⩾ min
{

xi +
D(D− xi)

r
, D− ε

}
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for some r > D. If we define

k :=
r
D

log
(

D− c
ε

)
,

then for all i ⩾ k, xi ⩾ D− ε.

Proof. We assume without loss of generality that c ⩽ D− ε, because otherwise k is negative and
the statement clearly holds.

We first note that xi ⩾ t implies

xi+1 ⩾ min
{

t +
D(D− t)

r
, D− ε

}
,

because f (t) = t + D(D−t)
r is increasing on [0, D]. So, if we define the sequence {yi}i∈N by

y0 = c and

yi+1 = yi +
D(D− yi)

r
,

then xi ⩾ min{yi, D− ε}, and thus it suffices to show that yi ⩾ D− ε for all i ⩾ k.
We can write the definition of y equivalently as

D− yi+1 = D− yi −
D(D− yi)

r
=

(
1− D

r

)
(D− yi) .

In other words, D− yi decays exponentially as

D− yi =

(
1− D

r

)i

(D− c) .

Thus choosing

k′ =
log
(

ε
D−c

)
log
(
1− D

r

)
guarantees that yi ⩾ D− ε for all i ⩾ k′. Because

k′ = −
log
(D−c

ε

)
log
(
1− D

r

)
⩽

r
D

log
(

D− c
ε

)
(log(1 + x) ⩽ x, log

(
D− c

ε
⩾ 0
)
)

⩽ k ,

the lemma follows. ♦

Lemma 4.14. Suppose that
max

product |π′⟩
⟨π′|ρ|π′⟩ = 2/3 + D ,

and suppose ⟨π|ρ|π⟩ ⩾ 2/3 + c ⩾ 2/3 in some iteration of Line 9’s outer loop. Then conditioned
on Line 9 never erring thereafter, Algorithm 4.11 returns a |π⟩ satisfying the output condition (i.e.,
⟨π|ρ|π⟩ ⩾ 2/3 + D− ε) within at most

⌈
5εe2m⌉+ max

{
0,
⌈

450
D

log
(

D− c
ε

)⌉}
additional iterations of the outer loop.
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Proof. Claim 4.12 shows that in each non-terminating iteration, ⟨π|ρ|π⟩ increases by at least
∥⃗a∥2

2
20 ⩾ e−2m

5 . So, if c ⩾ D− ε, then the algorithm must halt within ⌈5εe2m⌉ additional iterations
(as the fidelity can never exceed 2/3 + D). Conversely, if c < D− ε, then it suffices to show that
the algorithm achieves ⟨π|ρ|π⟩ ⩾ 2/3 + D− ε within the initial

⌈ 450
D log

(D−c
ε

)⌉
iterations of the

outer loop, because thereafter the algorithm must halt within ⌈5εe2m⌉ additional iterations. So,
we assume henceforth that c < D− ε.

For i ∈ N, define xi so that ⟨π|ρ|π⟩ = 2/3 + xi immediately after the end of i additional
iterations of the outer loop, with the convention that ⟨π|ρ|π⟩ = 2/3 + x0 ⩾ 2/3 + c at the start
of the algorithm.

Suppose that xi ⩽ D − ε, and consider what happens in iteration i + 1. We know that
xi ⩾ c ⩾ 0 by Claim 4.12. Then Corollary 4.7 tells us that

2/3 + D ⩽ 2/3 + xi + min
{

3∥⃗z∥2,
∥⃗z∥2

2
xi

}
,

or equivalently

∥⃗z∥2
2 ⩾ max

{
(D− xi)

2

9
, x(D− xi)

}
,

which then gives

∥⃗z∥2
2 ⩾

D(D− xi)

10
. (6)

We claim that within this (i + 1)th iteration of the outer loop, the algorithm finds a⃗ satisfying
∥⃗a∥2 ⩾ e1−λ ⩾ 2∥⃗a− z⃗∥2 for some λ ⩽ m, as otherwise upon reaching Line 14 we would have√

C′ε
10

⩽

√
Dε

10
(D ⩾ C and D ⩾ xi + ε ⩾ ε by supposition)

⩽

√
D(D− xi)

10
(D ⩾ xi + ε by supposition))

⩽ ∥⃗z∥2 (Equation (6))

⩽ ∥⃗a∥2 + ∥⃗a− z⃗∥2 (Triangle inequality)

< 2e−m + e−m

⩽

√
C′ε
10

,

a contradiction.
We know that ∥⃗a∥2 ⩾ ∥⃗z∥2− ∥⃗a− z⃗∥2 by the triangle inequality, and since ∥⃗a− z⃗∥2 ⩽ ∥⃗a∥2/2,

we get that

∥⃗a∥2 ⩾
2
3
∥⃗z∥2

⩾
2
3

√
D(D− xi)

10
. (Equation (6))

Plugging into Corollary 4.7,

⟨πa⃗/10|UρU†|πa⃗/10⟩ − ⟨π|ρ|π⟩ = ⟨πa⃗/10|UρU†|πa⃗/10⟩ − ⟨0n|UρU†|0n⟩

⩾
∥⃗a∥2

2
20

⩾
D(D− xi)

450
.
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We have effectively established that

xi+1 ⩾ min
{

xi +
D(D− xi)

450
, D− ε

}
.

Lemma 4.13 shows that for all i ⩾ k, xi ⩾ D− ε, where

k =
450
D

log
(

D− c
ε

)
,

which proves the lemma. ♦

Lemma 4.14 is almost sufficient to establish Algorithm 4.11’s correctness; we only need to
show that the total error probability is at most δ. For that, we bound the total number of calls to
the tomography subroutine (Line 9).

Lemma 4.15. Consider a run of Algorithm 4.11 where Line 9 never errs. Then for a given λ, Line 9 is
executed at most ⌈

5εe2m⌉+ ⌈900ℓλ

C′

⌉
times before Algorithm 4.11 halts.

Proof. Define D := maxproduct |π′⟩ ⟨π′|ρ|π′⟩ − 2/3 as in Lemma 4.14. We break into cases
depending on D and λ.

Case 1: D < ε. Then the total number of calls to Line 9 is bounded by the number of
iterations of the outer loop, which by Lemma 4.14 is at most

⌈
5εe2m⌉+ max

{
0,
⌈

450
D

log
(

D
ε

)⌉}
=
⌈
5εe2m⌉ .

Case 2: D ⩾ ε, λ = 1. Again we bound the number of calls to Line 9 by the number of
iterations of the outer loop, using Lemma 4.14 and that 1/3 ⩾ D ⩾ max{C, ε} = C′:

⌈
5εe2m⌉+ max

{
0,
⌈

450
D

log
(

D
ε

)⌉}
⩽
⌈
5εe2m⌉+ ⌈450

C′
log
(

1
3ε

)⌉
⩽
⌈
5εe2m⌉+ ⌈900m

C′

⌉
=
⌈
5εe2m⌉+ ⌈900ℓλ

C′

⌉
.

Case 3: D ⩾ ε, λ ⩾ 2. Consider an iteration of the algorithm in which ⟨π|ρ|π⟩ = 2/3 + x. In
order for the for-loop (Line 6) to reach iteration λ, by the triangle inequality we must have

∥⃗z∥2 ⩽ ∥⃗a∥2 + ∥⃗a− z⃗∥2

⩽ 2e−(λ−1) + e−(λ−1)

= 3eℓλ−m

⩽

√
C′ε
10

eℓλ .

We know from Corollary 4.7 that

2/3 + D ⩽ 2/3 + x + min
{

3∥⃗z∥2,
∥⃗z∥2

2
x

}
,
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or equivalently

∥⃗z∥2
2 ⩾ max

{
(D− x)2

9
, x(D− x)

}
,

which then gives

∥⃗z∥2
2 ⩾

D(D− x)
10

.

Combining, we find that
D− x

ε
⩽

C′

D
e2ℓλ ⩽ e2ℓλ ,

because D ⩾ max{ε, C} = C′.
We have shown that Line 9 is executed for this particular λ only when x ⩾ D− εe2ℓλ . Since x

never drops below 0 (Claim 4.12), we can let c := max{0, D− εe2ℓλ} and appeal to Lemma 4.14
to bound the number of additional iterations for which the algorithm can run by

⌈
5εe2m⌉+ max

{
0,
⌈

450
D

log
(

D− c
ε

)⌉}
.

The lemma follows by substituting c ⩾ D− εe2ℓλ and C′ ⩽ D. ♦

Corollary 4.16. The total failure probability of Algorithm 4.11 is at most δ.

Proof. By a union bound, we can use Lemma 4.15 to bound the contribution of each run of
Line 9 for a given λ:

m

∑
λ=1

δλ

(⌈
5εe2m⌉+ ⌈900ℓλ

C′

⌉)
= δ

m

∑
λ=1

2−ℓλ

= δ
m

∑
ℓ=1

2−ℓ (ℓ := m + 1− λ)

< δ
∞

∑
ℓ=1

2−ℓ

= δ . ♦

Corollary 4.17. Assuming Line 9 never errs, the total sample complexity Algorithm 4.11 is at most

O
(

n
εC′2

log
1

δC′

)
and the runtime is

O
(

n2 log n
εC′2

log
1

δC′
+

n
C′

log2 1
εC′

log2 1
δC′

)
,

recalling that C′ = max{ε, C}.

Proof. For a given λ, a single run of Line 9 has sample complexity O
(

ne2λ log 1
δλ

)
according to

Lemma 4.10. A simple calculation shows that

log
1
δλ

⩽ O
(
ℓλ + log

ℓλ

δC′

)
⩽ O

(
ℓλ + log

1
δC′

)
.

Using Lemma 4.15, Line 9 is called a total of

⌈
5εe2m⌉+ ⌈900ℓλ

C′

⌉
⩽ O

(
ℓλ

C′

)
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times. The total sample complexity is therefore

m

∑
λ=1

O
(

ne2λ log
(

1
δλ

)
ℓλ

C′

)
⩽

m

∑
λ=1

O
(

ne2λ

(
ℓλ + log

1
δC′

)
ℓλ

C′

)
⩽

m

∑
ℓ=1

O
(

ne2m+2−2ℓ
(
ℓ+ log

1
δC′

)
ℓ

C′

)
(ℓ := m + 1− λ)

⩽
n

εC′2
m

∑
ℓ=1

O
(

e−2ℓ
(
ℓ+ log

1
δC′

)
ℓ

)
⩽ O

(
n

εC′2
log

1
δC′

)
. (7)

We turn to the time complexity. By Lemma 4.10, the runtime of a single call to Line 9 with
chosen λ is

(Sample complexity) ·O(n log n) + O
(

n log2 1
δλ

)
.

Since the O(n log n) is independent of λ, it is easy to bound the contribution of the left term to
the runtime: we multiply the total sample complexity (Equation (7)) by O(n log n), yielding
O
(

n2 log n
εC′2 log 1

δC′

)
. So, we focus on bounding the contribution of the right term, which is

m

∑
λ=1

O
(

n log2
(

1
δλ

)
ℓλ

C′

)
⩽

m

∑
λ=1

O

(
n
(
ℓλ + log

1
δC′

)2 ℓλ

C′

)

⩽
m

∑
ℓ=1

O

(
n
(
ℓ+ log

1
δC′

)2 ℓ

C′

)
(ℓ := m + 1− λ)

⩽
n
C′

m

∑
ℓ=1

O

((
ℓ+ log

1
δC′

)2

ℓ

)

⩽
n
C′

m

∑
ℓ=1

O
(
ℓ3 + ℓ log2 1

δC′

)
((a + b)2 ⩽ O

(
a2 + b2))

⩽
n
C′

O
(

m4 + m2 log2 1
δC′

)
⩽ O

( n
εC′2

)
+ O

(
n
C′

log2 1
εC′

log2 1
δC′

)
. (m = O

(
log

1
εC′

)
) (8)

The left part of Equation (8) gets absorbed into the O
(

n2 log n
εC′2 log 1

δC′

)
. ♦

4.5 Divide and conquer

As written, Algorithm 4.11 assumes that we begin with a product state |π⟩ having fidelity at
least 2/3 with ρ. This is not a true learning algorithm, then, because such a state |π⟩might not
be known in advance. Nevertheless, we can straightforwardly generalize Algorithm 4.11 to a
learning algorithm that only takes copies of ρ as input, using a divide-and-conquer approach.
This works as a consequence of the following lemma:

Lemma 4.18. Let ρAB be a state on a systems A and B. Suppose that ⟨ϕ|ρA|ϕ⟩ ⩾ 1 − ε1 and
⟨π|ρB|π⟩ ⩾ 1− ε2. Then

⟨ϕπ|ρAB|ϕπ⟩ ⩾ 1− ε1 − ε2 .
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Proof. Extend |π⟩ =: |π1⟩ to an orthonormal basis {|πi⟩ | i ∈ [d]} for B. Since the partial trace
can be computed by summing over any orthonormal basis, we have

1− ε1 ⩽ ⟨ϕ|ρA|ϕ⟩

=
d

∑
i=1
⟨ϕπi|ρAB|ϕπi⟩

⩽ ⟨ϕπ|ρAB|ϕπ⟩+
d

∑
i=2
⟨πi|ρB|πi⟩

= ⟨ϕπ|ρAB|ϕπ⟩+ 1− ⟨π|ρB|π⟩
⩽ ⟨ϕπ|ρAB|ϕπ⟩+ ε2 .

The lemma follows by rearranging. ♦

The full learning algorithm is below; its correctness is self-explanatory. Note that we must
assume the existence of a product state with fidelity above 5/6, instead of 2/3 in the previous
algorithm. This is because of the loss incurred from combining the two halves via Lemma 4.18.

Algorithm 4.19. (High-fidelity product state agnostic learning).

Input: Copies of an n-qubit state ρ, ε ∈ (0, 1/6], δ ∈ (0, 1)

Promise: There exists a product state |π⟩ satisfying ⟨π|ρ|π⟩ ⩾ 5/6 + ε

Output: A product state |π⟩ satisfying ⟨π|ρ|π⟩ ⩾ maxproduct |π′⟩ ⟨π′|ρ|π′⟩ − ε with proba-
bility at least 1− δ

Procedure:
1: ▷ First find a product state |π⟩ such that ⟨π|ρ|π⟩ ⩾ 2/3
2: if n = 1 then
3: Use tomography to find a |π⟩ satisfying ⟨π|ρ|π⟩ ⩾ 2/3 with prob. 1− δ/2
4: else
5: ρL := the left half of ρ

6: |πL⟩ := Algorithm 4.19(ρL, ε, δ/4) ▷ ⟨πL|ρL|πL⟩ ⩾ 5/6
7: ρR := the right half of ρ

8: |πR⟩ := Algorithm 4.19(ρR, ε, δ/4) ▷ ⟨πR|ρR|πR⟩ ⩾ 5/6
9: |π⟩ := |πL⟩ ⊗ |πR⟩ ▷ ⟨π|ρ|π⟩ ⩾ 2/3 by Lemma 4.18

10: return Algorithm 4.11(ρ, |π⟩ , ε, δ/2, 1/3 + ε) ▷ Error ⩽ δ/4+ δ/4+ δ/2 = δ

Theorem 4.20. Algorithm 4.19 has sample complexity

O
(

n
ε

log
1
δ

)
and runs in time

O
(

n2 log n
ε

log
1
δ
+ n log n log2 1

ε
log2 1

δ

)
⩽ O

(
n2 log n

ε
log2 1

δ

)
.

Proof. For the sample complexity, observe that copies of ρ can be shared between the two
recursive calls to Algorithm 4.19, because a copy of ρ is both a copy of ρL and a copy of ρR.
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When n = 1, it is clear that Line 3 can be performed using O
(
log 1

δ

)
time and samples. For

example, one can estimate the coordinates of ρ on the Bloch sphere to some small constant
precision by measuring repeatedly in the X, Y, and Z bases. Therefore, the contribution of Line 3
to sample complexity and runtime across recursive calls to Algorithm 4.19 are, respectively, at
most O

(
log n2

δ

)
⩽ O

(
log n log 1

δ

)
and O

(
n log n2

δ

)
⩽ O

(
n log n log 1

δ

)
. These are dominated by

the other terms.
Line 10 accounts for the remaining algorithmic complexity. By Corollary 4.17, because we

pick C > 1/3, the overall sample complexity due to Algorithm 4.11 across recursive calls is at
most

⌈log2 n⌉

∑
i=0

O
(

n2−i

ε
log

4i

δ

)
⩽

n
ε

log
1
δ

⌈log2 n⌉

∑
i=0

O
(

i
2i

)
⩽ O

(
n
ε

log
1
δ

)
.

The time complexity bound is

⌈log2 n⌉

∑
i=0

2i ·O
((

n2−i)2 log(n2−i)

ε
log

4i

δ
+ n2−i log2 1

ε
log2 4i

δ

)
.

We handle the two terms within the summation separately. The left term is bounded by:

n2 log n
ε

log
1
δ

⌈log2 n⌉

∑
i=0

O
(

i
2i

)
⩽ O

(
n2 log n

ε
log

1
δ

)
. (9)

The right term is bounded by:

n log2 1
ε

⌈log2 n⌉

∑
i=0

O
(

log2 4i

δ

)
⩽ n log2 1

ε

⌈log2 n⌉

∑
i=0

O
(

i2 + log2 1
δ

)
((a + b)2 ⩽ O

(
a2 + b2))

⩽ O
(

n log3 n log2 1
ε
+ n log n log2 1

ε
log2 1

δ

)
.

The theorem follows because n log3 n log2 1
ε is bounded by Equation (9). ♦

5 Agnostic learning of product states

In this section, we give our general algorithm for finding product states which have good
fidelity with an input state ρ. Our output will take the form of a “good” product state cover, as
given below.

Definition 5.1 (Good product state cover). A collection of pure product states on m qubits,
C = {|πi⟩}i is a (η, ε, b, B)-good cover for a state ρ if

1. For all |π⟩ ∈ C, ⟨π| ρ |π⟩ ⩾ η − ε.

2. For all distinct |π⟩ , |π′⟩ ∈ C, dtan(|π⟩ , |π′⟩) ⩾ b.

3. For all product states on m qubits, |ϕ⟩, such that ⟨ϕ| ρ |ϕ⟩ ⩾ η, there exists |π⟩ ∈ C such
that dtan(|ϕ⟩ , |π⟩) ⩽ B.

We will eventually take b = 2/η and B = 3/η, so for brevity a (η, ε)-good cover refers to a
(η, ε, 2/η, 3/η)-good cover.5

5The properties our parameters must satisfy are that η − ε− 1
b > 0 (for Claim 5.4) and that B > b (for the greedy

algorithm to succeed).
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It may not yet be clear that a good product state cover for ρ even exists. When B ⩾ b, a
greedy approach works here: start with C = ∅, and while property 3 does not hold for C,
add the violating |ϕ⟩ to C. This approach will be used and adapted to be more tractable in
Algorithm 5.5. We also soon show that the size of good product state convers is small (Claim 5.4).
First, we state the theorem we will prove in this section.

Theorem 5.2 (Agnostic learning of product states). Let ρ be an n-qubit state and suppose we
are given error parameters η ∈ (0, 1), ε ∈ (0, η/3), and δ ∈ (0, 1). Then there is an algorithm
which, with probability ⩾ 1− δ, outputs an (η, ε)-good product state cover for ρ. The algorithm uses
N ⩽ (poly(n))1/η2+log 1

ε poly(log 1
δ ) copies of ρ, poly(n, 1/η, log 1

ε ) quantum gates per copy of ρ,
and npoly(1/ε) poly(log 1

δ ) additional classical overhead.

Remark 5.3 (Applications of Theorem 5.2). We use this remark to note some immediate corol-
laries of the above algorithm.

First, it can be used to deduce OPT = max|π⟩ ⟨π| ρ |π⟩, the maximum fidelity a product state
has with ρ, to a specified error 2ε. This is because the cover C output by the algorithm contains
at least one product state with fidelity at least η − ε, if a product state with fidelity at least η

exists. So, we can start with η = 1/2 and perform binary search on the choice of η, reducing
η when the output cover is empty and increasing it when it is non-empty. After O(log(1/ε))

iterations (and with an appropriate choice of δ), η will be an ε-good estimate. This also gives a
product state |π⟩ such that ⟨π| ρ |π⟩ ⩾ OPT− 2ε. The running time for this algorithm is also
npoly(1/ε) poly(log 1

δ ), since if η ever drops below ε, 0 is a suitable output, and the number of
copies used is at most (poly(n))1/(max(OPT,ε))2+log 1

ε poly(log 1
δ ).

Now, we show that a good product state cover cannot be too large.

Claim 5.4 (Size of a good cover). Let C be a (η, ε, b, B)-good cover for a state with density matrix
ρ. Then |C| ⩽ 1

η−ε− 1
b
, provided η − ε− 1

b > 0.

Proof. Let C = {|π(i)⟩}i, and let M be the matrix whose ith column is |π(i)⟩. Consider the Gram
matrix M† M; its (i, j)th entry is ⟨π(i)|π(j)⟩. When i = j, this entry is 1, and otherwise, the entry
has bounded magnitude:

|⟨π(i)|π(j)⟩| ⩽ 1
dtan(|π(i)⟩ , |π(j)⟩)

⩽
1
b

,

where the first step follows from Lemma 3.6 and the second from property 2 of the definition
of a good product state cover. So, every row has one diagonal entry of value 1 and the other
|C| − 1 entries are bounded by 1

b . A consequence of the Gershgorin circle theorem is that the
operator norm of a symmetric matrix is bounded by the maximum sum of absolute values of all
the entries in a single column. So,

∥M∥2
op = ∥M† M∥op ⩽ 1 +

|C|
b

.

This gives us the upper bound ⩽ 1 + |C|/b. We can similarly lower bound the operator norm of
M:

∥M∥2
op = ∥MM†∥op ⩾ tr[MM†ρ] = ∑

i
⟨πi| ρ |πi⟩ ⩾ |C|(η − ε) .
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Here we use the definition of the operator norm and property 1 of the definition of a good
product state cover. Putting both bounds together, we have that

|C| ⩽ 1
η − ε− 1

b

as desired. ♦

5.1 Finding a good product state cover

Now we present an iterative algorithm that builds a good product state cover as it sweeps along
the registers of the input state.

Algorithm 5.5 (Extending a good product state cover).

Input: Copies of a state ρ; parameters η ∈ (0, 1) and ε ∈ (0, η
3 )

Output: C, a (η, ε) good product state cover for ρ.

Subroutine: We assume the existence of an oracle which, given a set of product states
C, copies of the state ρ, and a “root” product state |φ⟩, either outputs a classical
description of a product state |π⟩ or ⊥. The output is guaranteed to satisfy

(a) ⟨π| ρ |π⟩ ⩾ η − ε;

(b) For all |π′⟩ ∈ Ck, dtan(|π⟩ , |π′⟩) ⩾ 2/η;

If there is a product state |π⟩ such that

(a’) ⟨π| ρ |π⟩ ⩾ η;

(b’) For all |π′⟩ ∈ Ck, dtan(|π⟩ , |π′⟩) ⩾ 3/η;

(c’) dtan(|π⟩ , |φ⟩) ⩽ 4/η;

then the oracle is guaranteed to not output ⊥.

Procedure:
1: Let N ⊂ C2 be a 1-tangent distance net over qubits;
2: Let C0 = {1};
3: for k from 1 to n do
4: ▷ Create an (η, ε)-good product state cover for ρ[k] ◁

5: Let Ck = ∅;
6: loop
7: Call the oracle on Ck and ρ[k] and all |φ⟩ ∈ Ck−1 ⊗N ;
8: If any of the calls return a product state |π⟩ ∈ (C2)⊗k, add it to Ck;
9: Otherwise, exit the loop;

10: Output Cn;

Remark 5.6 (An explicit 1-tangent distance net). In the algorithm, we need a net over qubit
states N such that, for every state |ϕ⟩, there is a |φ⟩ ∈ N such that dtan(|ϕ⟩ , |φ⟩) < 1. By
Definition 3.2, considering the states on the Bloch sphere, this means that the angle θ between
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|ϕ⟩ and |φ⟩ is less than π/2. So, we can form such a net just by picking the states on the axes of
the Bloch sphere: N = {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}.

Claim 5.7. Algorithm 5.5 outputs a (η, ε) good product state cover for ρ, requiring O( n
η2 ) runs

of the subroutine and O( n2

η2 ) classical overhead.

Proof. We will show that Ck is an (η, ε)-good product state cover for ρ[k], by induction on k. We
consider the oracle’s behavior in Line 7, when run on Ck and ρ[k]. First, we observe that, for all k,
because conditions (a) and (b) of the subroutine guarantee are identical to properties 1 and 2 of
Definition 5.1 with respect to ρ[k], Ck will always obey such properties. So, it suffices to show
that Ck also obeys property 3 at the end of the “repeat” loop.

We first show for k = 1. Consider some product state |ϕ⟩ such that ⟨ϕ| ρ[k] |ϕ⟩ ⩾ η. Then
|ϕ⟩ satisfies condition (a’) and (c’) in Line 7 for some element of C0 ⊗N : since N is a net, there
is some |φ⟩ ∈ C0 ⊗N = N such that dtan(|φ⟩ , |ϕ⟩) < 1 ⩽ 4/η. Because the oracle output ⊥
when run on Ck, this means that (b’) must not be satisfied for |ϕ⟩. In other words, some |π⟩ ∈ C1

satisfies dtan(|π⟩ , |ϕ⟩) < 3
η . This shows that C1 satisfies property 3 of the product state cover.

For k > 1, again consider a product state |ϕ⟩ = |ϕ1⟩ . . . |ϕk⟩ such that ⟨ϕ| ρ[k] |ϕ⟩ ⩾ η. Then
|ϕ⟩ satisfies condition (a’). Further, it satisfies condition (c’) for some |φ⟩ ∈ Ck−1 ⊗N : since
Ck−1 is a good product state cover and (⟨ϕ1| . . . ⟨ϕk−1|)ρ[k−1](|ϕ1⟩ . . . |ϕk−1⟩) ⩾ η, there exists a
product state |ν⟩ in Ck−1 such that dtan(|ϕ1⟩ . . . |ϕk−1⟩ , |ν⟩) ⩽ 3/η. Then, there is some |φk⟩ such
that dtan(|ϕ⟩ , |ν⟩ |φk⟩) ⩽

√
( 3

η )
2 + 1 ⩽ 4

η as claimed.
Thus, because of the guarantee of the oracle, after the repeat loop terminates, condition (b’)

cannot be true for |ϕ⟩. So, there is a |π⟩ ∈ Ck such that dtan(|ϕ⟩ , |π⟩) < 3/η. This shows that Ck

satisfies property 3 of the product state cover.
Every product state cover satisfies |Ck| ⩽ 1/(η − ε − η/2) ⩽ 6/η by Claim 5.4, so the

subroutine only needs to be run at most n(6/η)2|N | times. The only additional overhead is
the task of storing the cover, which takes O(n) time with a classical computer per element
added. ♦

5.2 Finding candidate product states

Now, we specify how to perform Line 7 in Algorithm 5.5. We restate the goal of that subroutine
here.

Lemma 5.8. Suppose we are given a set of r product state constraints {(⃗a(s), b)}s∈[r] where a⃗(s) ∈ Cm

and b > 0, a description of a known “root” product state |φ⟩ ∈ (C2)⊗m, and error parameters η ∈ (0, 1),
ε ∈ (0, η/3), and δ ∈ (0, 1). Then there is an algorithm which, with probability ⩾ 1− δ, successfully
performs the subroutine as specified in Algorithm 5.5: it outputs either ⊥ or a z⃗ ∈ Cm such that

(a) ⟨πz⃗| ρ |πz⃗⟩ ⩾ η − ε;

(b) For all s ∈ [r], dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ b.

If there is a product state |π⟩ such that

(a’) ⟨π| ρ |π⟩ ⩾ η;

(b’) For all s ∈ [r], dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ 1.5b;

(c’) dtan(|π⟩ , |φ⟩) ⩽ B;
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then the output is guaranteed to not be⊥. The algorithm uses N ⩽ (poly(m))(B2+log 1
ε ) log 1

δ copies of ρ,
poly(m, B, log 1

ε ) quantum gates per copy of ρ, and mpoly(r,B,b,1/b,1/ε) poly(log 1
δ ) additional classical

overhead.

From this, we can immediately conclude our main result:

Proof of Theorem 5.2. By Claim 5.7, to construct the cover, it suffices to call Lemma 5.8 poly(n, 1/η)

times with parameters m ⩽ n, B = 4/η, b = 3/η, and a set of product state constraints where
r = O(1/η) by Claim 5.4. There is a failure of probability associated to each run of the sub-
routine, but the failure probability parameter can be rescaled such that the probability of all
calls succeeding is at least ⩾ 1− δ. This gives the stated running time, and associated quantum
complexities. ♦

The rest of this section is devoted to proving Lemma 5.8. The algorithm is given in Algo-
rithm 5.10; we spend the rest of this subsection describing the intuition for this algorithm. We
prove the desired complexity bounds in Claim 5.11, and then we prove the above guarantees in
Claim 5.18 and Claim 5.19. The complexity bound requires the use of a polynomial optimization
routine, which is described and proved later, in Section 6.

Algorithm intuition. Our goal is to search within tangent distance B of the root state for a
product state that has good overlap with ρ, if one exists. Further, we have additional constraints
that the state we find be far away from a collection of r product states in tangent distance.
Without loss of generality, we can take the root state to be |π⃗0⟩ = |0n⟩. Then it suffices to find
an (approximate) solution to the following optimization problem, which finds the product state
with the best fidelity under these constraints:

maximize
z⃗∈Cm

⟨πz⃗| ρ |πz⃗⟩

subject to dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ b for all s ∈ [r],

dtan(|πz⃗⟩ , |π⃗0⟩) ⩽ B.

(P1)

We would like to reduce this task to one of optimizing a low-degree polynomial under
simple constraints. The criterion dtan(|πz⃗⟩ , |π⃗0⟩) ⩽ B is equivalent to ∥⃗z∥2 ⩽ B. However, the
other tangent distance constraints do not simplify so easily. We can simplify them for small
coordinates, and because z⃗ is bounded norm, most coordinates are small; we encode this into
the program:

maximize
z⃗, S⊆[m]

⟨πz⃗| ρ |πz⃗⟩

subject to |⃗zi| ⩽ µ for all i ̸∈ S

|S| ⩽ B2/µ2

dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ b for all s ∈ [r],

∥⃗z∥2 ⩽ B.

(P2)

This program gives an equivalent solution to (P1). Now we can approximate the farness
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constraints by an ℓ2 constraint for the coordinates outside of S.

maximize
z⃗, S⊂[m]

⟨πz⃗| ρ |πz⃗⟩

subject to |⃗zi| ⩽ µ for all i ̸∈ S

|S| ⩽ B2/µ2

dtan(|πz⃗S⟩ , |π
a⃗(s)S
⟩)2 + ∥⃗zS − a⃗(s)

S
∥2

2 ⩾ 1.5b2 for all s ∈ [r],

∥⃗z∥2 ⩽ B.

(P3)

Our first key lemma (Lemma 5.16) shows that this is a stronger constraint than that of (P2), but
still satisfies for completeness, so the program will still find a good product state under the
desired circumstances.

Finally, we would like to approximate the objective function ⟨πz⃗|ρ|πz⃗⟩ by a low-degree
polynomial. We do this by replacing ρ with a truncation: for d ∈ [m], let ρd = Π⩽dρΠ⩽d, where
Π⩽d is the projector onto computational basis strings with Hamming weight less than or equal
to d. Then ⟨πz⃗|ρd|πz⃗⟩ is a degree-d polynomial multiplied by the normalization ∏i∈[m]

1
1+|zi |2

.
Because most coordinates of z⃗ are small, this normalization can be captured by a simpler
quantity: ∏i∈S

1
1+|zi |2

≈ e−∥⃗zS∥2
2 . After taking these approximations, we have the following

optimization problem.

maximize
z⃗, S⊂[m]

p⃗zS (⃗zS) =
e−∥⃗zS∥2

2

∏i∈S(1 + |zi|2) ∑
x,x′∈{0,1}m

⟨x| ρd |x′⟩ (⃗z∗)x (⃗z)x′

subject to |zi| ⩽ µ for all i ̸∈ S

|S| ⩽ B2/µ2

dtan(|πz⃗S⟩ , |π
a⃗(s)S
⟩)2 + ∥⃗zS − a⃗(s)

S
∥2

2 ⩾ 1.5b2 for all s ∈ [r],

∥⃗z∥2 ⩽ B.

(P4)

Above, for a vector z⃗ ∈ Cm and string x ∈ {0, 1}m, we use the notation (⃗z)x = ∏xi=1 zi. Our
second key lemma (Lemma 5.17) shows that the objective functions of (P4) and (P3) are close
on the domain.

(P4) is the optimization program implicitly being run by the eventual algorithm (Algo-
rithm 5.10). There are three major differences. First, we do not know ρd, so we perform
tomography on ρ to get some estimate ϱd which we use instead (Lemma 5.9). This is efficient
because we are performing tomography on a small subspace Πd. Second, the above program
still has poorly behaved elements. However, these are all located in the subspace V(S) spanned
by the coordinates of S and the a⃗(s)’s. If we knew the true value of z⃗ on V(S) (and the true value
of ∥⃗zS∥2), then the objective function becomes a degree-d polynomial and the constraints all
become simple ℓ2 and ℓ∞ constraints, which is a form we can solve (Theorem 6.3). However,
this is a low-dimensional subspace, so we can simply guess the value of z⃗ on this subspace, and
pick the best solution among all guesses. Finally, we need to allow for some tolerance εtol in our
argument, because of the error in guessing and the error of the final polynomial optimization
algorithm.

5.3 Algorithm and showing running time

We begin with a lemma for the form of state tomography we need for the algorithm. We did
not attempt to optimize this, but we note that this is the only “quantum” part of the algorithm,
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and any tomography algorithm could be used here. Here, we choose one which only performs
single-copy Clifford measurements. This is also the only part of the algorithm which is random,
and so this is the only place where there is a probability of failure. For our correctness proofs,
we will assume that this tomography step always completes successfully.

Lemma 5.9 (Computationally efficient state tomography). There is an algorithm which, given
copies of ρ and a parameter d, outputs a positive semi-definite matrix ρ̂ with trace at most 1 and
supported on the strings of Hamming weight ⩽ d, such that ∥ρ̂−Π⩽dρΠ⩽d∥op < ε. This algorithm

uses N = O( (10n)2d

ε2 log 1
δ ) copies of ρ, along with poly(n, d) quantum gates per copy of ρ and poly(N)

classical processing.

Proof. First, similarly to Lemma 4.10, for every copy of ρ, we can attach d⌈log2(n + 1)⌉ +
O(log d) ancilla qubits, and then apply a poly(n, d)-sized circuit which performs the following
unitary. For a set J ⊆ [n] with elements i1 < i2 < · · · < i|J|, the circuit maps |0d⟩ |eJ⟩ 7→
|i1⟩ |i2⟩ . . . |i|J|⟩ |0d−|J|⟩ |eJ⟩ when |J| ⩽ d, and does nothing to |0d⟩ |eJ⟩ when |J| > d. Here,
we use eJ to denote the n-qubit state which is |1⟩ on the qubits in J and |0⟩ otherwise. After
applying this circuit and discarding the n-qubit state, the density matrix of the d⌈log2(n + 1)⌉
ancilla qubits contains Π⩽dρΠ⩽d as a submatrix. So, it suffices to perform tomography on this
density matrix of size D ⩽ (10n)d, which we denote σ, and output the corresponding matrix,
which is ΠσΠ for some projector Π on some subset of computational basis states.

We use a simple, gate-efficient tomography algorithm. Consider the process that measures a
random Clifford circuit, C, performs C† on the σ and measures in the computational basis to get
|i⟩, and then taking the estimator ((D + 1)C |i⟩⟨i|C† − I). If we perform this process N times
and then average the estimator to form σ̂, it satisfies the following [Low21, Section 1.5.2]:

E∥σ̂− σ∥2
F ⩽

D2 + D− 1
N

.

In the language of Flammia and O’Donnell [FO24], this is a state estimation algorithm with
Frobenius-squared rate D2+D−1

N , and so by [FO24, Proposition 3.10], with only a constant
factor loss in the guarantee, we can modify the algorithm such that it always outputs a matrix
σ̂ which is positive semi-definite and satisfies tr(ρ̂) = 1. Further, by [FO24, Proposition
3.11], the guarantee can be upgraded to the guarantee that ∥σ̂− σ∥2

F ⩽ c(D2+D−1)
N log 1

δ with
probability ⩾ 1− δ, for some sufficiently large constant. Since ∥X∥op ⩽ ∥X∥F, for some choice
of N = O(D

ε log 1
δ ), we have that ∥σ̂− σ∥op < ε with probability ⩾ 1− δ. Finally, this operator

norm bound also bounds the operator norm distance for every submatrix, so we can conclude
that for ρ̂ formed by re-labeling the rows and columns of Πσ̂Π, ∥ρ̂−Π⩽dρΠ⩽d∥op < ε. ♦

For the following algorithm, and throughout this section, for a vector v⃗ we use the notation
v⃗S ∈ C|S| to denote the vector restricted to the coordinates of S, and for two vectors u⃗S, v⃗S, the
notation (u⃗S, v⃗S) denotes the vector which is u⃗ on the coordinates corresponding to S and v⃗ on
the coordinates corresponding to S.
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Algorithm 5.10 (Adding a new element to the cover).

Input: A set of product state constraints {(⃗a(s), b)}s∈[r]; copies of an m-qubit state ρ; an
explicit known “root” product state |φ⟩ ∈ (C2)⊗m; parameters B, η, ε, δ.

Output: Either ⊥ or a z⃗ ∈ Cm with guarantees as in Lemma 5.8

Procedure:
1: Recenter |φ⟩ to be |0m⟩;
2: Let εapprox = ε/100; ▷ εapprox is for approximation errors.
3: Choose µ ⩽ 1

10 min(b, 1
b ,
√

εapprox

B ); ▷ µ is the eventual ℓ∞ bound; we need the b upper
bound for Lemma 5.16, and the

√
ε/B2 upper bound for Lemma 5.17

4: Let d = 10B2 + log 2
εapprox

; ▷ d is the degree of the eventual polynomial

5: Let εtol ⩽ min(γ, µ4/
√

m, 0.01ε) = poly(1/m, µ, ε); ▷ Here, γ is the tolerance pa-
rameter coming from Theorem 6.3; the other parts are used in the proof of soundness
(Claim 5.18).

6: Perform tomography on ρd = Π⩽dρΠ⩽d to get a description of ϱd such that ∥ϱd −
ρd∥op ⩽ εapprox with probability ⩾ 1− δ, where Π⩽d = ∑|x|⩽d |x⟩⟨x| (Lemma 5.9);
▷ Note that we will use the additional properties of ϱd guaranteed by Lemma 5.9. In
particular, ϱd is supported on the image of Π⩽d.

7: for all subsets S ⊆ [m] of size ⩽ B2/µ2 do
8: Let V(S) be the subspace spanned by {⃗a(s)}s∈[r] and the computational basis

vectors associated to S;
9: Let NS be an εtol-net over the space FS, where

FS =
{

v⃗ ∈ V(S), ν ∈ [0, B]
∣∣∣ ∥v⃗S∥2

2 + ν2 ⩽ B2, ∥v⃗∥2 ⩽ B,

ν2 − ∥v⃗S∥
2
2 + ∥v⃗S − a⃗(s)

S
∥2

2 ⩾ 1.5b2 − dtan(|πv⃗S⟩ , |π
a⃗(s)S
⟩)2 for all s ∈ [r]

}
. (10)

▷ The net enforces that the output is far from the a⃗(s)’s; the error parameter needs to
be at most εtol, and is used to show completeness (Claim 5.19). The formal criteria
the net satisfies is given in Claim 5.15.

10: for (⃗v, ν) ∈ NS do
11: Consider the domain

Dεtol = {⃗zS ∈ C
|S| | |∥⃗zS∥2 − ν| ⩽ εtol, ∥ΠV(S) z⃗− v⃗∥2 ⩽ εtol,

∥⃗zS∥∞ ⩽ µ + εtol for z⃗ = (⃗vS, z⃗S)}; (11)
12: Use Theorem 6.3 to find a y⃗S ∈ D2εtol such that

pv⃗S,ν (⃗yS) ⩾ max
z⃗S∈Dεtol

pv⃗S,ν (⃗zS)− εapprox

for p⃗zS,ν (⃗zS) =
e−ν2

∏i∈S(1 + |zi|2) ∑
x,x′∈{0,1}m

⟨x| ϱd |x′⟩ (⃗z∗)x⃗zx′ , (P0)

13: Add y⃗ = (⃗vS, y⃗S) to the list of candidate solutions, along with its objective
value py⃗ ← pv⃗S,ν (⃗yS);

14: Let u⃗ be the candidate solution achieving the largest objective value pu⃗;
15: If pu⃗ ⩾ η − ε/2, output it; output ⊥ otherwise.
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Claim 5.11. For some sufficiently large C > 1, Algorithm 5.10 requires N ⩽ mC(B2+log 1
ε ) log 1

δ

copies of ρ, poly(m, B, log 1
ε ) quantum gates per copy of ρ, (poly(B, b, m)/εtol)

B2/µ2+r+1 calls
to the optimization problem (P0), and (N + (poly(B, b, m)/εtol)

B2/µ2+r)C additional classical
overhead.

Proof. The only step of the algorithm which is quantum is the tomography step, so the quantum
complexities follow from Lemma 5.9 with d = 10B2 + log 2

εapprox
.

The number of calls to the optimization problem is at most the number of subsets iterated
over times a bound on the size of every net NS. The number of subsets of cardinality at most
B2/µ2 is at most (m + 1)B2/µ2

. By Claim 5.15, the cardinality of NS is at most ( 1
cεtol

)|S|+r+1 for

some c = poly(1/B, 1/b, m). Multiplying the two together, we get (m + 1)B2/µ2
( 1

cεtol
)B2/µ2+r+1

as desired.
The running time is dominated by the tomography algorithm and the construction of the

nets NS; both take polynomial time, by Lemma 5.9 and Claim 5.15. ♦

Claim 5.12. A yS as in (P0) can be solved in (B/εtol)
poly(d,r,1/εapprox,1/µ) time. Thus, the classical

overhead of Algorithm 5.10 is mpoly(r,B,b,1/b,1/ε) poly(log 1
δ ).

Proof. This is a corollary of Theorem 6.3. Recall that we are considering the objective function

p⃗zS,ν (⃗zS) =
e−ν2

∏i∈S(1 + |zi|2) ∑
x,x′∈{0,1}m

⟨x| ϱd |x′⟩ (⃗z∗)x⃗zx′ .

= e−ν2

∑
x,x′∈{0,1}|S|

⟨x|
(
(IS ⊗ ⟨πz⃗S |S)ϱd(IS ⊗ |πz⃗S⟩S)

)
|x′⟩ (⃗z∗S)

x (⃗zS)
x′

Defining σ = (IS ⊗ ⟨πz⃗S |S)ϱd(IS ⊗ |πz⃗S⟩S), we can express p⃗zS,ν(zS) as

p⃗zS,ν (⃗zS) = e−ν2
(∏

i∈S

(1 + |zi|2)) ⟨πz⃗S
| σ |πz⃗S

⟩ ,

We can further write it in terms of tensors T(k) ∈ (Cn)⊗2k.

p⃗zS,ν (⃗zS) = e−ν2
(

T(0) + ⟨T(1), z∗S ⊗ zS⟩+ · · ·+ ⟨T
(d), (z∗S)

⊗d ⊗ z⊗d
S
⟩
)

,

T(k)
i1 ...ik j1...jk

=

{
1

(k!)2 ⟨ei1,...,ik | σ |ej1,...,jk⟩ i1, . . . , ik are distinct, j1, . . . , jk are distinct

0 otherwise

Note that ∥T(k)∥F ⩽ 1
(k!)∥σ∥F, since for every entry of σ there are (k!)2 corresponding entries

in T(k) containing it, scaled down by a factor of (k!)2. In order to apply Theorem 6.3, we can
further break this up into two cases. When ν ⩽ 1, we optimize 1

10 p⃗zS,ν(zS) (that is, the function
f

e−ν2

10 T
(⃗zS)) to εapprox/10 error, since with this choice the tensors satisfy

d

∑
k=0

e−ν2

10
∥T(k)∥F ⩽

d

∑
k=0

1
10(k!)

⩽ 1.

The domain we want to optimize over is, recalling (11),

Dεtol = {⃗zS ∈ C
|S| | |∥⃗zS∥2 − ν| ⩽ εtol, ∥ΠV(S) z⃗− v⃗∥2 ⩽ εtol,

∥⃗zS∥∞ ⩽ µ + εtol for z⃗ = (⃗vS, z⃗S)}.
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This domain is almost of the form needed for Theorem 6.3, Definition 6.2; all we need is to make
the following adjustment:

∥ΠV(S) z⃗− v⃗∥2 ⩽ εtol ⇐⇒ ∥W† (⃗zS − v⃗S)∥2 ⩽ εtol,

where W ∈ C|S|×r is a matrix with ∥W∥op ⩽ 1 such that (WW† )⃗zS = ΠV(S) (⃗0S, z⃗S). This is
possible since ΠV(S) is rank at most r over the subspace spanned by the vectors (⃗0S, z⃗S). Then,
Theorem 6.3 outputs a y⃗ ∈ C|S| such that 1

10 p⃗zS,ν (⃗y) ⩾ max⃗zS∈D
2εtol

1
10 p⃗zS,ν (⃗zS)−

εapprox
10 . This is

the desired bound after rescaling.
When ν > 1, we optimize the tensors e−ν2

ν2kT(k) with respect to the variables t⃗ = z⃗S/ν. That
is, we write

p⃗zS,ν (⃗zS) =
(

e−ν2
T(0) + · · ·+ ⟨e−ν2

ν2dT(d), (⃗t∗)⊗d ⊗ (⃗t)⊗d⟩
)

Then, the sum of the norms of the tensors is

d

∑
k=0

e−ν2
ν2k∥T(k)∥F ⩽ e−ν2

d

∑
k=0

ν2k

k!
⩽ 1.

So, if we apply Theorem 6.3 to with error parameter εapprox, we are done. Finally, we can write
the domain in terms of the variables t⃗:

|∥⃗zS∥2 − ν| ⩽ εtol ⇐⇒ |∥⃗t∥2 − 1| ⩽ εtol/ν

∥ΠV(S) z⃗− v⃗∥2 ⩽ εtol ⇐⇒ ∥W† (⃗t− v⃗S/ν)∥2 ⩽ εtol/ν

Here, we set our tolerance parameter to be εtol/ν, where 1 ⩽ ν ⩽ B, giving the desired running
time. ♦

5.4 Showing correctness

Lemma 5.13. For any vectors u⃗, v⃗, a⃗ ∈ Cm and parameters B > 1, ε > 0, if ∥u⃗∥2, ∥v⃗∥2, ∥⃗a∥2 ⩽ B and
dtan(|πv⃗⟩ , |πa⃗⟩) ⩽ B and ∥u⃗− v⃗∥2 ⩽ ε where ε ⩽ 1/(10mB)6 then

|dtan(|πa⃗⟩ , |πv⃗⟩)− dtan(|πa⃗⟩ , |πu⃗⟩)| ⩽ ε(10mB)6

Proof. Recall that

dtan(|πa⃗⟩ , |πv⃗⟩)2 =
m

∑
i=1

∣∣∣∣ vi − ai

1 + a∗i vi

∣∣∣∣2 .

The derivative of vi−ai
1+a∗i vi

with respect to vi is

1 + a∗i vi − a∗i (vi − ai)

(1 + a∗i vi)2 .

Note that whenever |1 + a∗i vi| ⩽ 1/2 then |vi − ai| ⩾ 0.1. Thus, the magnitude of the derivative

is at most 100B2
(

1 +
∣∣∣ vi−ai

1+a∗i vi

∣∣∣2). Thus, if we define the vectors

V⃗ =

{
vi − ai

1 + a∗i vi

}
i∈[m]

, U⃗ =

{
ui − ai

1 + a∗i ui

}
i∈[m]

then integrating the above and using the assumption that ∥u⃗− v⃗∥2 ⩽ ε implies

∥V⃗ − U⃗∥2 ⩽ 200B3mε .

From this, we immediately get the desired inequality. ♦

46



Corollary 5.14. For two vectors u⃗, v⃗ ∈ Cm such that ∥u⃗− v⃗∥ < poly(1/B, 1/m, 1/b) and ∥u⃗∥, ∥v⃗∥ ⩽
B, along with an arbitrary a⃗ and ν, b ∈ R, we have that

ν2 − ∥v⃗S∥
2
2 + ∥v⃗S − a⃗S∥

2
2 ⩾ 1.5b2 − dtan(|πv⃗S⟩ , |πa⃗S⟩)

2

=⇒ ν2 − ∥u⃗S∥
2
2 + ∥u⃗S − a⃗S∥

2
2 ⩾ 1.49b2 − dtan(|πu⃗S⟩ , |πa⃗S⟩)

2.

Proof. Note that when dtan(|πv⃗S⟩ , |πa⃗S⟩) ⩾ 2(b + B) then the inequalities are both trivially true.
Also, if ∥v⃗S − a⃗S∥2 ⩾ 2(B + b) then the inequalities are both trivially true.

Otherwise, we can just apply Lemma 5.13 to bound the difference between dtan(|πu⃗S⟩ , |πa⃗S⟩)
and dtan(|πv⃗S⟩ , |πa⃗S⟩) and also directly bound the differences ∥v⃗S∥2

2 − ∥u⃗S∥2
2 and ∥v⃗S − a⃗S∥2

2 −
∥u⃗S − a⃗S∥2

2 to get the desired conclusion. ♦

Claim 5.15. There is a NS which satisfies the following properties. First, NS satisfies that, for
every (⃗v, ν) ∈ NS, the following conditions hold: v⃗ ∈ VS; ∥v⃗S∥2 + ν2 ⩽ B2; ∥v⃗∥ ⩽ B; and

ν2 − ∥v⃗S∥
2
2 + ∥v⃗S − a⃗(s)

S
∥2

2 ⩾ 1.49b2 − dtan(|πv⃗S⟩ , |π
a⃗(s)S
⟩)2.

Second, for any (⃗v, ν) ∈ FS, there is a (⃗v′, ν′) such that ∥v⃗− v⃗′∥ ⩽ εtol and |ν− ν′| ⩽ εtol. This
net has at most ( 1

cεtol
)10(|S|+r+1) elements and can be constructed in ( 1

cεtol
)10(|S|+r+1) time, for

some c = poly(1/B, 1/b, 1/m).

Proof. Let AS be the set

AS =
{

v⃗ ∈ V(S), ν ∈ [0, B]
∣∣∣ ∥v⃗S∥2

2 + ν2 ⩽ B2, ∥v⃗∥2 ⩽ B
}

i.e. it is FS with the tangent distance constraint removed. Now we can construct a net BS for
the set AS such that

• For all (⃗v, ν) ∈ FS, there is (⃗v′, ν′) ∈ BS such that ∥v⃗− v⃗′∥ ⩽ cεtol and |ν− ν′| ⩽ cεtol

• All elements of BS are in AS

• The net BS can be enumerated in ( 1
cεtol

)10(|S|+r+1) time

We can construct BS by simply enumerating over a sufficiently fine grid for v⃗ and ν. Now given
BS, we construct NS by simply removing all points (⃗v′, ν′) such that

ν′2 − ∥v⃗′S∥
2
2 + ∥v⃗′S − a⃗(s)

S
∥2

2 < 1.49b2 − dtan(|πv⃗′S
⟩ , |π

a⃗(s)S
⟩)2 .

By Corollary 5.14, this removal never removes any (⃗v′, ν′) such that ∥v⃗− v⃗′∥ ⩽ εtol and |ν− ν′| ⩽
εtol for some (⃗v, ν) ∈ FS. Thus, NS still covers all points in FS, as desired. ♦

Lemma 5.16 (Approximating tangent distance constraints). For z⃗, a⃗ ∈ Cm, b > 0, and |S| ⊆ [m],
if ∥⃗zS∥∞ ⩽ 1

6 min( 1
b , b), then the following implications hold.

dtan(|πz⃗⟩ , |πa⃗⟩) ⩾ 1.5b =⇒ dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2 ⩾ 1.5b2

dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2 ⩾ (1.4− ∥⃗aS∥∞)b2 =⇒ dtan(|πz⃗⟩ , |πa⃗⟩) ⩾ b

Proof. The main idea is that we can relate dtan(|πz⃗⟩ , |πa⃗⟩)2 to dtan(|πz⃗S⟩ , |πa⃗S⟩)2 + ∥⃗zS − a⃗S∥2
2

up to some small constant multiplicative error. Let µ = 1
6 min( 1

b , b), so that ∥⃗zS∥∞ ⩽ µ.
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We consider two cases. First, suppose |ai| ⩽ 1
2µ for all i ̸∈ S. For such constraints, we have

the following bound on the difference between the two constraints:∣∣∣dtan(|πz⃗⟩ , |πa⃗⟩)2 − (dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2)
∣∣∣

=
∣∣∣dtan(|πz⃗S

⟩ , |πa⃗S
⟩)2 − ∥⃗zS − a⃗S∥

2
2

∣∣∣
⩽ dtan(|πz⃗S

⟩ , |πa⃗S
⟩)2(max

i∈S
|zi||ai|)2

⩽
1
4

dtan(|πz⃗⟩ , |πa⃗⟩)2

where the first inequality follows from Lemma 3.9, the second inequality uses that |zi| ⩽ µ for
all i ̸∈ S and by assumption |a(s)i | ⩽ 1/(2µ) for all i ̸∈ S. So, we can conclude that

dtan(|πz⃗⟩ , |πa⃗⟩)2 ⩾ (1.5b)2 =⇒ dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2 ⩾

3
4
(1.5b)2 ⩾ 1.5b2 ,

dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2 ⩾ (1.4− ∥⃗aS∥∞)b2 =⇒ dtan(|πz⃗⟩ , |πa⃗⟩)2 ⩾

4
5
(
1.4− ∥⃗aS∥∞

)
b2,

where the last line gives the desired ⩾ b2 bound by our case assumption that ∥⃗aS∥∞ ⩽ 1
2µ ⩽ 0.1.

For the other case, suppose |ai| > 1
2µ for some i ̸∈ S. We then argue that all inequalities are

true, so the implications hold trivially.

dtan(|πz⃗⟩ , |πa⃗⟩) ⩾
∣∣∣ zi − ai

1 + z∗i ai

∣∣∣ ⩾ ∣∣∣µ− 1
2µ

1 + 1
2

∣∣∣ ⩾ 1
3

∣∣∣µ− 1
µ

∣∣∣ ⩾ 1.5b.

Similarly, using the same bounds, we have that

dtan(|πz⃗S⟩ , |πa⃗S⟩)
2 + ∥⃗zS − a⃗S∥

2
2 ⩾ |zi − ai|2 ⩾

( 1
2µ
− µ

)2
⩾

1
4

( 1
µ
− µ

)2
⩾ 1.5b2.

Thus, all of the stated inequalities are true. ♦

Lemma 5.17. Consider a vector z⃗ ∈ Cm and set S ⊆ [m] such that ∥⃗zS∥∞ ⩽
√

εapprox

∥⃗z∥2
. Further, for an

εapprox > 0, let d ⩾ 8∥⃗z∥2
2 + log 2

εapprox
, and let ϱd satisfy the guarantees of the output of Algorithm 5.10:

∥ϱd −Π⩽dΠ⩽d∥op ⩽ εapprox for a PSD matrix ϱd with trace at most 1 and supported only on the image
of Π⩽d. Then

|⟨πz⃗| ρ |πz⃗⟩ − p⃗zS (⃗zS)| ⩽ 3εapprox,

where p⃗zS (⃗zS) =
e−∥⃗zS∥2

2

∏i∈S(1 + |zi|2) ∑
x,x′∈{0,1}m

⟨x| ϱd |x′⟩ (⃗z∗)x (⃗z)x′ .

Proof. Fix a vector z⃗. Recall that ρd = Π⩽dρΠ⩽d is the unknown state truncated to strings of
Hamming weight at most d, and ϱd is our estimate of ρd. We first show the following:

|⟨πz⃗| ρ |πz⃗⟩ − ⟨πz⃗| ρd |πz⃗⟩| ⩽ εapprox .

To see this, we apply Lemma 3.10 to z⃗ to get the following:

|⟨πz⃗| ρ |πz⃗⟩ − ⟨πz⃗| ρd |πz⃗⟩| =
∣∣∣tr(ρ(|πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|Π<d)

)∣∣∣
⩽ ∥|πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|Π<d∥op

⩽ ∥|πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|∥op + ∥Π<d |πz⃗⟩⟨πz⃗| −Π<d |πz⃗⟩⟨πz⃗|Π<d∥op

⩽ 2∥|πz⃗⟩ −Π<d |πz⃗⟩∥2

= 2∥Π⩾d |πz⃗⟩∥2

⩽ 2e−d(log(d/∥⃗z∥2
2)−1)

48



Since we take d ⩾ 8∥⃗z∥2
2 + log 2

εapprox
, this makes the final quantity smaller than εapprox. Next,

because ∥ϱd − ρd∥op ⩽ εapprox, by the definition of operator norm we have

|⟨πz⃗| ρd |πz⃗⟩ − ⟨πz⃗| ϱd |πz⃗⟩| ⩽ εapprox .

We can relate this quantity to p⃗zS (⃗zS) as follows:

p⃗zS (⃗zS) =
e−∥⃗zS∥2

2

∏i∈S(1 + |zi|2) ∑
x,x′∈{0,1}m

⟨x| ϱd |x′⟩ (⃗z∗)x⃗zx′

=
e−∥⃗zS∥2

2 ∏i∈[m](1 + |zi|)2

∏i∈S(1 + |zi|2)
⟨πz⃗| ϱd |πz⃗⟩

=
(
e−∥⃗zS∥2

2 ∏
i ̸∈S

(1 + |zi|)2) ⟨πz⃗| ϱd |πz⃗⟩ .

By Lemma 3.7, we have:

e−∑i ̸∈S|zi |4 ⩽ e−∥⃗zS∥2
2 ∏

i ̸∈S
(1 + |zi|)2 ⩽ 1 ,

where we also know that

∑
i ̸∈S
|zi|4 ⩽ ∥⃗zS∥

2
2∥⃗zS∥

2
∞ ⩽ εapprox.

Since 1− x ⩽ e−x, we have the following multiplicative error bounds on p⃗zS (⃗zS):

(1− εapprox) ⟨πz⃗| ϱd |πz⃗⟩ ⩽ p⃗zS (⃗zS) ⩽ ⟨πz⃗| ϱd |πz⃗⟩ .

As ϱd is a sub-normalized quantum state, εapprox ⟨πz⃗| ϱd |πz⃗⟩ ⩽ εapprox, so |⟨πz⃗| ϱd |πz⃗⟩ −
p⃗zS (⃗zS)| ⩽ εapprox. Applying the triangle inequality, we get the desired bound:

|⟨πz⃗| ρ |πz⃗⟩ − p⃗zS (⃗zS)| ⩽ |⟨πz⃗| ρ |πz⃗⟩ − ⟨πz⃗| ρd |πz⃗⟩|
+ |⟨πz⃗| ρd |πz⃗⟩ − ⟨πz⃗| ϱd |πz⃗⟩|+ |⟨πz⃗| ϱd |πz⃗⟩ − p⃗zS (⃗zS)| ⩽ 3εapprox ♦

We now prove correctness. We split the desired guarantee into two parts: soundness and
completeness. First, we prove soundness.

Claim 5.18 (Soundness). The output of Algorithm 5.10 satisfies the desired correctness criteria:
the output is either ⊥ or a z⃗ ∈ Cm such that

(a) ⟨πz⃗| ρ |πz⃗⟩ ⩾ η − ε;

(b) For all s ∈ [r], dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ b.

Proof. From inspecting Algorithm 5.10, we can observe that the output u⃗ satisfies the following
guarantees, for some internal parameters S, v⃗ ∈ V(S), and ν ∈ [0, B]. First, it satisfies the
guarantees from being in the domain D2εtol :

|∥u⃗S∥2 − ν| ⩽ 2εtol ∥ΠV(S) u⃗− v⃗∥2 ⩽ 2εtol ∥u⃗S∥∞ ⩽ µ + 2εtol (12)

Since we have that εtol ⩽ 0.01B and ν ⩽ B, this implies that |∥u⃗S∥2
2 − ν2| ⩽ 3Bεtol. The

output u⃗ also satisfies the tangent distance guarantees inherited from the εtol-net, the bound
∥u⃗S∥2

2 + ν2 ⩽ B2 also from the net, and the guarantee from the objective function:

ν2 − ∥v⃗S∥
2
2 + ∥v⃗S − a⃗(s)

S
∥2

2 ⩾ 1.49b2 − dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2 for all s ∈ [r] (13)

pu⃗S,ν(u⃗S) ⩾ η − ε/2 (14)
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From (14), we can conclude (a). First, we relate pu⃗S,ν(u⃗S) = eν2−∥u⃗S∥2
2 pu⃗S(u⃗S) to ⟨πu⃗| ρ |πu⃗⟩:

|⟨πu⃗| ρ |πu⃗⟩ − pu⃗S,ν(u⃗S)| ⩽ |⟨πu⃗| ρ |πu⃗⟩ − pu⃗S(u⃗S)|+ |pu⃗S(u⃗S)− pu⃗S,ν(u⃗S)|

⩽ 3εapprox + |1− eν2−∥u⃗S∥2
2 ||pu⃗S(u⃗S)|

⩽ 3εapprox + |1− eν2−∥u⃗S∥2
2 |(1 + 3εapprox)

⩽ 3εapprox + 0.1ε.

Above, we use that εtol ⩽ 0.01ε/B and Lemma 5.17; we satisfy the assumptions of the lemma
since ∥u⃗∥2 ⩽ B + 2εtol ⩽ 1.1B and ∥u⃗S∥∞ ⩽ 1.1µ ⩽

√
εapprox

2B ⩽
√

εapprox

∥u⃗∥2
.

⟨πu⃗| ρ |πu⃗⟩ ⩾ (η − ε/2) + (⟨πu⃗| ρ |πu⃗⟩ − pu⃗S(u⃗S)) ⩾ η − ε/2− 3εapprox − 0.1ε ⩾ η − ε.

To get (b), we work with the tangent distance constraints (13). Along with the domain constraints
(12), these imply the following:

dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2 + ∥u⃗S − a⃗(s)

S
∥2

2 ⩾ 1.49b2 − 20εtol(B + ∥⃗a(s)
S
∥2) for all s ∈ [r] (15)

This follows from the below argument, where we use triangle inequality, εtol ⩽ 0.01, and
the Pythagorean theorem. Since V(S) contains the subspace corresponding to S, there is
a corresponding projector Π such that Πx⃗S = (ΠV(S) x⃗)S (so, in particular, ∥Πu⃗S − v⃗S∥2 =

∥(ΠV(S) u⃗− v⃗)S∥2 ⩽ 2εtol and Π⃗a(s)
S

= a⃗(s)
S

for all s ∈ [r]).

|ν2 − ∥v⃗S∥
2
2 + ∥v⃗S − a⃗(s)

S
∥2

2 − ∥u⃗S − a⃗(s)
S
∥2

2|

⩽ 3Bεtol + |∥u⃗S∥
2
2 − ∥v⃗S∥

2
2 + ∥v⃗S − a⃗(s)

S
∥2

2 − ∥u⃗S − a⃗(s)
S
∥2

2|

= 3Bεtol + |(∥Πu⃗S∥
2
2 − ∥v⃗S∥

2
2) + (∥v⃗S − a⃗(s)

S
∥2

2 − ∥Π(u⃗S − a⃗(s)
S
)∥2

2)|

⩽ 3Bεtol + ∥Πu⃗S − v⃗S∥2(∥Πu⃗S∥2 + ∥v⃗S∥2 + ∥v⃗S − a⃗(s)
S
∥2 + ∥Πu⃗S − a⃗(s)

S
∥2)

⩽ 20εtol(B + ∥⃗a(s)
S
∥2)

Notice that we have no bound on the size of a⃗(S), so we cannot remove this dependence. Next,
we use that εtol is sufficiently small (specifically, smaller than 0.001

(1+B)
√

m b2) to conclude from (15)
that

dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2 + ∥u⃗S − a⃗(s)

S
∥2

2 ⩾ (1.4− ∥⃗aS∥∞)b2 for all s ∈ [r].

Then, we can appeal to Lemma 5.16, since ∥u⃗S∥∞ ⩽ µ + 2εtol ⩽
1
6 min(b, 1

b ) for every s ∈ [r], to
get that (b) is satisfied:

dtan(|πu⃗⟩ , |πa⃗(s)⟩) ⩾ b for all s ∈ [r]. ♦

Claim 5.19 (Completeness). If there is a product state |π⟩ such that

(a’) ⟨π| ρ |π⟩ ⩾ η;

(b’) For all s ∈ [r], dtan(|πz⃗⟩ , |πa⃗(s)⟩) ⩾ 1.5b;

(c’) dtan(|π⟩ , |φ⟩) ⩽ B;

then the output of Algorithm 5.10 is guaranteed to not be ⊥.
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Proof. We work in the basis where |φ⟩ is rotated to |0m⟩ via single-qubit unitaries. Let |πu⃗⟩ be a
product state satisfying (a’), (b’), and (c’). We will show that Algorithm 5.10 will, in its search,
find some ⃗̃u close to u⃗ and which achieves a similarly large objective value. Thus, the algorithm
will not output ⊥.

First, let S = {i | |ui| ⩾ µ}. Using (c’), dtan(|πu⃗⟩ , |0m⟩) = ∥u⃗∥2 ⩽ B, so ∥u∥2
2 ⩽ ∑i∈S u2

i /µ2 ⩽
B2/µ2. So, we can consider FS for the corresponding choice of S. Our vector u⃗ has a corre-
sponding point in the “feasible set”, (ΠV(S) u⃗, ∥u⃗S∥2) ∈ FS. The key constraint to check is the
tangent distance constraint in the definition of FS (10), which becomes

∥u⃗S∥
2
2 − ∥(ΠV(S) u⃗)S∥

2
2 + ∥(ΠV(S) u⃗)S − a⃗(s)

S
∥2

2 ⩾ 1.5b2 − dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2

⇐⇒ ∥u⃗S∥
2
2 − ∥Πu⃗S∥

2
2 + ∥Π(u⃗S − a⃗(s)

S
)∥2

2 ⩾ 1.5b2 − dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2

⇐⇒ dtan(|πu⃗S⟩ , |π
a⃗(s)S
⟩)2 + ∥u⃗S − a⃗(s)

S
∥2

2 ⩾ 1.5b2,

where as in Claim 5.18 we define Π to be the projector such that Πz⃗S = (ΠV(S) z⃗)S. By
Lemma 5.16, (b’) implies the above condition for all s ∈ [r]. So, by Claim 5.15, we can find a
point (⃗v, ν) ∈ NS such that

∥v⃗−ΠV(S) u⃗∥2 ⩽ εtol , |∥u⃗S∥2 − ν| ⩽ εtol . (16)

We now claim that the vector u⃗S ∈ Dεtol as defined in (11). Thus, the vector z⃗ = (⃗vS, u⃗S) is a
feasible solution to the optimization problem in (P0). To show this, observe that

∥⃗z− u⃗∥2 = ∥v⃗S − u⃗S∥2 ⩽ εtol

Here, we use the definition of the two norm squared as the sum over entries; that off of S, z⃗ and
u⃗ are identical; and (16). From this, we can check that for the first constraint of Dεtol , we have
that

|∥⃗zS∥2 − ν| ⩽ εtol .

The second and third constraints of Dεtol can also easily be verified:

∥ΠV(S) z⃗− v⃗∥2 = ∥ΠV(S) (⃗0S, (u⃗− v⃗)S)∥2 ⩽ ∥ΠV(S)(u⃗− v⃗)∥2 ⩽ εtol

∥⃗zS∥∞ = ∥u⃗S∥∞ ⩽ µ ⩽ µ + εtol.

In the first inequality in the first line line, we use that the subspace V(S) contains the subspace
spanned by S, so the projector onto S commutes with ΠV(S) . To finish the completeness proof,
we now need to show that, for the above choice of z⃗, p⃗zS,ν (⃗zS) ⩾ η− ε/2+ εapprox. Then, the best
candidate solution y⃗ found by the algorithm must have an objective value of at least η − ε/2,
and thus the algorithm will not output ⊥. Because z⃗ and u⃗ satisfy ∥⃗z− u⃗∥2 ⩽ εtol, we have the
following bound:

|⟨πz⃗| ρ |πz⃗⟩ − ⟨πu⃗| ρ |πu⃗⟩| ⩽ ∥|πz⃗⟩⟨πz⃗| − |πu⃗⟩⟨πu⃗|∥op

⩽ dtan(|πz⃗⟩ , |πu⃗⟩)
= dtan(|πz⃗S

⟩ , |πu⃗S
⟩)

⩽ ∥⃗zS − u⃗S∥2(1 + max
i∈S

(|zi||ui|))

⩽ εtol(1 + µ(µ + εtol))

⩽ 2εtol
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In the first line, we use the definition of the trace distance. Then we use Corollary 3.8, and
then the definition of tangent distance to restrict to the coordinates where z⃗ and u⃗ are not
equal. Then, we use Lemma 3.9 and then our bound ∥uS∥∞ ⩽ µ. We now relate the fidelity
to the objective function for z⃗ through Lemma 5.17, similarly to as in Claim 5.18. Recall that
pu⃗S,ν(u⃗S) = eν2−∥u⃗S∥2

2 pu⃗S(u⃗S), so

|⟨πu⃗| ρ |πu⃗⟩ − pu⃗S,ν(u⃗S)| ⩽ |⟨πu⃗| ρ |πu⃗⟩ − pu⃗S(u⃗S)|+ |pu⃗S(u⃗S)− pu⃗S,ν(u⃗S)|

⩽ 3εapprox + |1− eν2−∥u⃗S∥2
2 ||pu⃗S(u⃗S)|

⩽ 3εapprox + |1− eν2−∥u⃗S∥2
2 |(1 + 3εapprox)

⩽ 3εapprox + 0.1ε.

Above, we use (16), εtol ⩽ 0.01ε/B, and Lemma 5.17; we satisfy the assumptions since ∥u⃗∥2 ⩽

B + 2εtol ⩽ 1.1B and ∥u⃗S∥∞ ⩽ µ ⩽
√

εapprox

2B ⩽
√

εapprox

∥u⃗∥2
. Altogether, we have that

p⃗zS,ν (⃗zS) ⩾ ⟨πz⃗| ρ |πz⃗⟩ − 3εapprox − 0.1ε

⩾ ⟨πu⃗| ρ |πu⃗⟩ − 3εapprox − 0.1ε− 2εtol

⩾ η − ε/2 + εapprox.

Thus, Algorithm 5.10 does not output ⊥. ♦

6 Polynomial optimization

In this section, we provide an algorithm to solve the polynomial optimization problem subject to
subspace constraints obtained in Section 5. We note that while optimizing worst-case polynomial
systems is hard, we are working in the regime where the polynomial when viewed as a tensor
has Frobenius norm bounded by 1. This regime is reminiscent of optimizing dense CSP’s,
where additive error approximations suffice. In contrast, we are optimizing the polynomial
over the sphere, and do not require appealing to regularity-like statements. The key technical
contribution in this section is to show that our polynomial optimization problem with subspace
constraints admits a small ε-net.

Definition 6.1 (Polynomial notation). Let T(0) ∈ C, T(1) ∈ (Cn)⊗2, . . . , T(d) ∈ (Cn)⊗2d be
tensors. For x⃗ ∈ Cn, we denote

fT(0),...,T(d)(x⃗) = T(0) + ⟨T(1), x⃗∗ ⊗ x⃗⟩+ · · ·+ ⟨T(d), (x⃗∗)⊗d ⊗ x⃗⊗d⟩

Definition 6.2 (Domain with subspace and flatness constraints). For a matrix A ∈ Cr×n and
vector v⃗ ∈ Rr, parameters ν, µ, and tolerance γ, we define the set Dγ

v⃗,A,ν,µ = {x⃗ ∈ Cn :
|∥x⃗∥2 − ν| ⩽ γ, ∥Ax⃗− v⃗∥2 ⩽ γ, ∥x⃗∥∞ ⩽ µ + γ}.

The main theorem that we will prove is stated below.

Theorem 6.3 (Polynomial optimization over a subspace with flat vectors). Let T(k) ∈ (Cn)⊗2k

be tensors for all k = 0, 1, . . . , d, and assume ∑d
k=0∥Tk∥F ⩽ 1. Let A ∈ Cr×n be a matrix with

∥A∥op ⩽ 1 and let v⃗ ∈ Cr be a specified vector. Given positive ν, µ, ε such that ν ⩽ 1 and ε ⩽ 1, let
γ = poly(1/n, 1/d, ε). Then, there is an algorithm that runs in time (1/γ)poly(d,r,1/ε,1/µ) that outputs
either an x ∈ D2γ

v⃗,A,ν,µ (or ⊥ if D2γ
v⃗,A,ν,µ is empty). The output satisfies

| fT(0),...,T(d)(x⃗)| ⩾ max
y⃗∈Dγ

v⃗,A,ν,µ

| fT(0),...,T(d) (⃗y)| − ε .
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Now we describe the algorithm for solving the polynomial optimization problem.

Algorithm 6.4 (Polynomial optimization under product state cover constraints).

Input: Tensors T(0) ∈ C, . . . , T(d) ∈ (Cn)⊗2d, matrix A ∈ Cr×n, accuracy parameter
0 < ε < 1, bound 0 ⩽ ν ⩽ 1.

Output: A vector x⃗ such that

| fT(0),...,T(d)(x⃗)| ⩾ max
y⃗∈Dγ

v⃗,A,ν,µ

| fT(0),...,T(d) (⃗y)| − ε

where Dγ
v⃗,A,ν,µ is defined in Definition 6.2 and γ = poly(1/n, 1/d, ε).

Operation:
1: for j ∈ [d] do
2: for i ∈ [2j] do
3: Let Mj,i be the n× n2j−1 flattening of T(j) along the ith mode.
4: Compute the SVD of Mj,i and let Wj,i be the subspace corresponding to

singular values that are at least ε/(d + 1)2.
5: Let W be the subspace corresponding to the combined span of {Wj,i, W∗j,i}j∈[d],i∈[2j]

6: Let W ′ be the combined span of W and the rows of A
7: Let k = O(1/µ2).
8: for S ∈ [(n

k)] do
9: Let ZS be the subspace corresponding to the k coordinate vectors indexed by

S.
10: Construct the net NW ′,ZS,γ by taking a γ-net of the ball of radius 1 + γ in the

subspace spanned by W ′ and ZS and removing all elements that are not in
D2γ

v⃗,A,ν,µ
11: Construct a larger net by concatenating all the nets above, i.e. let Nγ =

∪S∈[(n
k)]
NW ′,ZS,γ.

12: Output
x⃗ = max

y⃗∈Nγ

| fT(0),...,T(d) (⃗y)|

which can be computed by iterating over each y⃗ ∈ Nγ.

We begin by showing that the function fT(0),...,T(d) (⃗y) essentially only depends on the projec-
tion of y⃗ onto some constant-dimensional subspace W, up to additive error ε.

Lemma 6.5 (Effective dimension). Let T(0) ∈ C, T(1) ∈ (Cn)⊗2, . . . , T(d) ∈ (Cn)⊗2d be tensors
and assume ∥T(0)∥F, . . . , ∥T(d)∥F ⩽ 1. For any parameter ε > 0, the subspace W computed in line 5 of
Algorithm 6.4 has dimension at most 8(d + 1)6/ε2 and satisfies that for any y⃗ ∈ Cn with ∥y⃗∥2 ⩽ 1,

| fT(0),...,T(d) (⃗y)− fT(0),...,T(d)(ΠW y⃗)| ⩽ ε ,

where ΠW is the orthogonal projection matrix for the subspace W.

Proof. Consider j ∈ [d] and a fixed tensor, T(j) ∈ (Cn)⊗2j such that ∥T(j)∥F ⩽ 1. Let Mj,i ∈
Cn×nd−1

be the flattening of T(j) into a n × nd−1 matrix along the ith mode and let σ =
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(σ1,i, . . . , σn,i) be the vector of singular values of Mj,i. Since ∥Mj,i∥2
F ⩽ 1, it follows that ∥σ∥2

2 ⩽ 1
and therefore there are at most 4(d + 1)4/ε2 singular values that are at least ε/(2(d + 1)2). Now
Wj,i is the subspace corresponding to the large singular values. We can bound

⟨T(j), (⃗y∗)⊗j ⊗ y⃗⊗j⟩ − ⟨T(j), (Π∗W y⃗∗)⊗j ⊗ y⃗⊗j⟩

=
j

∑
i=1

(
⟨T(j), (⃗y∗)⊗j−i+1 ⊗ (Π∗W y⃗∗)⊗i−1 ⊗ y⃗⊗j⟩ − ⟨T(j), (⃗y∗)⊗j−i ⊗ (Π∗W y⃗∗)⊗i ⊗ y⃗⊗j⟩

)
=

j

∑
i=1

(⃗y∗ −Π∗W y⃗∗)⊤Mj,ivec
(
(⃗y∗)⊗j−i ⊗ (Π∗W y⃗∗)⊗i−1 ⊗ y⃗⊗j

)
⩽

ε

2(d + 1)
,

where the last inequality follows from observing that (⃗y∗−Π∗W y⃗∗) is orthogonal to the subspace
W∗ and since W∗ contains Wj,i, this vector is also orthogonal to Wj,i. Similarly, we have

⟨T(j), (Π∗W y⃗∗)⊗j ⊗ y⃗⊗j⟩ − ⟨T(j), (Π∗W y⃗∗)⊗j ⊗ (ΠW y⃗)⊗j⟩ ⩽ ε

2(d + 1)
.

Now we can repeat the above argument for all of the tensors T(1), . . . , T(d) and use triangle
inequality to get the desired bound. Since W is the union of the spans of Wj,i, W∗j,i, its dimension
is at most 8(d + 1)6/ε2, as desired. ♦

Next, we show a structural statement that for sets of the form Dγ
v⃗,A,ν,µ, if they are nonempty,

then they contain a feasible point that is a linear combination of the rows of A and a sparse
vector.

Lemma 6.6 (Structure of the optimizer). Let A ∈ Cr×n be a matrix. Also assume we are given
parameters 0 < ν ⩽ 1, µ, γ > 0 and v⃗ ∈ Cr. If Dγ

v⃗,A,ν,µ is nonempty, then there exists some
x⃗ ∈ Dγ

v⃗,A,ν,µ that can be written as a sum of two vectors u⃗ + s⃗ where u⃗ is in the row subspace of A and s⃗
is 1/µ2 + 1-sparse.

Proof. We may assume r + 1/µ2 < n as otherwise the statement is trivially true.
Consider the solution x⃗(0) ∈ Dγ

v⃗,A,ν,µ that is lexicographically maximal in coordinate magni-

tude, i.e. it lexicographically maximizes the sequence |x(0)1 |, . . . , |x(0)n |. Note that the set Dγ
v⃗,A,ν,µ

is closed so this x⃗(0) is well-defined.
Let S ⊆ [n] be the set of coordinates j such that |x(0)j | = µ + γ. Let V be the subspace

spanned by the rows of A and {⃗ej}j∈S (where e⃗j are the standard basis vectors).
Let T ⊆ [n] be the set of coordinates j′ such that e⃗j′ is in V. If |T| = n, then we are trivially

done since |S| ⩽ 1/µ2 and the rows of A and {⃗ej}j∈S would span all of Cn. Now assume that
|T| < n so there is some index that is not in T. Let j0 be the lexicographically minimum index
such that j0 /∈ T. We attempt to construct a vector ∆⃗ ∈ Cn that is orthogonal to V and x⃗(0) and
has nonzero coordinate on j0. If such a vector does not exist, then this implies that e⃗j0 is in the
span of V and x⃗(0). Since by assumption, e⃗j0 is not in the span V, this also implies that x⃗(0) is in
the span of V and e⃗j0 which then immediately implies the desired statement. Now it remains to
consider the case when such a vector ∆⃗ exists. Now consider replacing x⃗(0) with the vector

x⃗′ = ΠV x⃗(0) +
∥(I −ΠV)x⃗(0)∥2√
∥(I −ΠV)x⃗(0)∥2

2 + |z|2
· ((I −ΠV)x⃗(0) + z∆⃗)
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for a complex number z. Note that ∥x⃗′∥2 = ∥x⃗(0)∥2 since ⟨∆⃗, (I −ΠV)x⃗(0)⟩ = ⟨∆, x⃗(0)⟩ = 0 so

∥(I −ΠV)x⃗(0) + z∆⃗∥2 =
√
∥(I −ΠV)x⃗(0)∥2

2 + |z|2 .

Also, the projection onto the subspace V is unchanged so Ax⃗′ = Ax⃗(0) and x⃗′ and x⃗(0) match
on all coordinates in S. Thus, there is some positive δ such that the above vector is in Dγ

v⃗,A,ν,µ

for all complex numbers z with |z| ⩽ δ. If ∥(I −ΠV)x⃗(0)∥2 > 0, then there would be some
choice of z that increases the magnitude of x(0)j0

(without changing any of the coordinates with

indices smaller than j0) and this contradicts the maximality of x⃗(0). Thus, we must actually have
ΠV x⃗(0) = x⃗(0) meaning that x⃗(0) is in the span of the rows of A and {⃗ej}j∈S which immediately
gives the desired property. ♦

Combining the two lemmas above suffices to show that our optimization problem admits a
small net.

Proof of Theorem 6.3. Using Lemma 6.5, we can ensure that the net Nγ described in Algo-
rithm 6.4 is of size (n/γ)poly(d,r,1/ε,1/µ) and can be constructed efficiently via a greedy pro-
cedure. It remains to show that this net must contain a vector with x⃗ such that | fT(0),...,T(d)(x⃗)| ⩾
maxy⃗∈Dγ

v⃗,A,ν,µ
| fT(0),...,T(d) (⃗y)| − ε.

Note that for x⃗, x⃗′ ∈ Cn with ∥x⃗∥2 ⩽ 1 + 2γ, ∥x⃗− x⃗′∥2 ⩽ 2γ, we have

| fT(0),...,T(d)(x⃗)− fT(0),...,T(d)(x⃗′)| ⩽ ε .

By Lemma 6.5, it suffices to argue that when we project all points in Nγ onto W, the points
form a 2γ-net of the projection of Dγ

v⃗,A,ν,µ onto W.
Consider any point y⃗ ∈ Dγ

v⃗,A,ν,µ. Let M be a matrix whose rows form an orthonormal basis
for W and let B be the matrix obtained by stacking A and M and let v⃗′ be the vector obtained
by stacking v⃗ and My⃗. Then by construction, y⃗ is an element of the set Dγ

v⃗′,B,ν,µ — in particular,
Dγ

v⃗′,B,ν,µ is nonempty. Lemma 6.6 then implies that there is some element of y⃗′ ∈ Dγ
v⃗′,B,ν,µ that

can be written as the sum of a vector in the combined span of A and W and a O(1/µ2)-sparse
vector. The construction ofNγ then implies that there is some y⃗′′ ∈ Nγ such that ∥y⃗′ − y⃗′′∥2 ⩽ γ

— note this is because y⃗′ ∈ Dγ
v⃗′,B,ν,µ ⊆ D

γ
v⃗,A,ν,µ so the entire γ-radius ball around y⃗′ is contained

in D2γ
v⃗,A,ν,µ and thus when constructing the net in line 10 of Algorithm 6.4, we never remove any

relevant points. Then,

∥ΠW y⃗′′ −ΠW y⃗∥2 ⩽ ∥ΠW y⃗′′ −ΠW y⃗′∥2 + ∥ΠW y⃗′ −ΠW y⃗∥2 ⩽ 2γ

and this shows thatNγ, when projected onto W, forms a 2γ-net of the projection of Dγ
v⃗,A,ν,µ onto

W. Thus Nγ must contain an ε-approximate maximizer and we are done.
♦

7 Hardness

Definition 7.1. The spectral norm of a tensor T ∈ Cn×n×n×n is defined as follows.

∥T∥op = max
x⃗, y⃗, u⃗, v⃗∈Cn

|⟨T, x⃗⊗ y⃗⊗ u⃗⊗ v⃗⟩|
∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2

.

Note that we define spectral norm to be maximizing over vectors with complex entries.
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Theorem 7.2. It is NP-hard to approximate the spectral norm of an n× n× n× n tensor T to within
additive error ∥T∥F

100n4 .

Proof. This is essentially shown in [FL17, Theorem 8.6], but the theorem statement did not
contain quantitative bounds. We will thus re-prove it here.

For an undirected graph G = (V, E) on n vertices with at least one edge, define the tensor
AG = ∑(s,t)∈E A(st) where A(st) ∈ Cn×n×n×n is the tensor where the (i, j, k, l)th entry is 1/2 if
and only if i, j, k, l is some permutation of two s’s and two t’s:

A(s,t)
ijkl =



1/2 i = s, j = t, k = s, l = t

1/2 i = t, j = s, k = t, l = s

1/2 i = s, j = t, k = t, l = s

1/2 i = t, j = s, k = s, l = t

0 otherwise.

By [FL17, Theorem 8.4], ∥AG∥op = κ(G)−1
κ(G)

, where κ(G) ∈ [n] is the clique number of G. The
clique number is NP-hard to compute [Kar72], and if we have an estimate ν such that |ν−
∥AG∥op| to 1

100n2 error, then | 1
1−ν − κ(G)| = | 1

1−ν −
1

1−∥AG∥op
| < 1

2 , so we can determine κ(G) by

computing 1
1−ν and rounding to the nearest integer. Thus, it is NP-hard to compute ∥AG∥op to

1
100n2 error. To conclude, observe that ∥AG∥F ⩽ n2. ♦

The main theorem that we will prove in this section is the following.

Theorem 7.3. Given an algorithm for agnostically learning product states such that for any n qubit
state and target error ε, the algorithm has sample complexity and running time f (n, ε) for some function
f and succeeds with probability 0.99, we can give a quantum algorithm for approximating the spectral
norm of a m×m×m×m tensor T to additive error ε∥T∥F with running time f (poly(m/ε), poly(ε))
that succeeds with probability 0.9.

Definition 7.4. Assume we are given a tensor T ∈ Cn×n×n×n with ∥T∥F = 1. Then we construct
a quantum state on 4n qubits as follows.

|ψT⟩ = ∑
i,j,k,l

T′ijkl |eiejekel⟩ ,

where for i, j, k, l ∈ [n], |eiejekel⟩ = |ei⟩ ⊗ |ej⟩ ⊗ |ek⟩ ⊗ |el⟩, where we recall that |ei⟩ is the product
state which is |1⟩ on the ith qubit and |0⟩ on the other n− 1 qubits.

One can verify that this is a valid quantum state, since ∥|ψT⟩∥2 = ∥T∥F = 1. We will
consider the quantum state corresponding to U⊗4T, where U ∈ Cn×m is a Haar-random matrix
with orthonormal columns and T ∈ Cm×m×m×m for some m ⩽ n. Here, we are randomly
embedding the tensor into a larger, n-dimensional space.

Claim 7.5. For T ∈ Cm×m×m×m and a Haar-random U ∈ Cn×m, as long as m ⩾ 10 log n, then
with 0.99 probability over the randomness of U, maxi,j,k,l∈[n]|(U⊗4T)ijkl | ⩽ (10m)2

n2 .

Proof. Note that the columns of U determine a random m-dimensional subspace of Cn. With
0.99 probability over the randomness of U, all unit vectors in the subspace spanned by the
columns U have entries with magnitude at most

√
10m/n. If this happens, then since T′ is

in the subspace spanned by the columns of U ⊗U ⊗U ⊗U and ∥T′∥F = 1, we must have
maxi,j,k,l∈[n]|T′ijkl | ⩽

(10m)2

n2 . ♦
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Lemma 7.6. Given a tensor T ∈ Cn×n×n×n with ∥T∥F = 1 and M = maxi,j,k,l n2|Tijkl |. Let OPTT be
the spectral norm of T and let OPT|ψT⟩ be defined as:

OPT|ψT⟩ = max
σ=|σ1⟩⊗···⊗|σn⟩

| ⟨σ|ψT⟩ | .

Then, for sufficiently large n,

e−2OPTT −
10M
n0.2 ⩽ OPT|ψT⟩ ⩽ e−2OPTT +

10
n0.1 +

10M
n0.2 .

Proof. First we prove the lower bound. Let x⃗, y⃗, u⃗, v⃗ ∈ Cn be unit vectors such that |⟨T, x⃗⊗ y⃗⊗
u⃗⊗ v⃗⟩| = OPTT. Let x⃗′, y⃗′, u⃗′, and v⃗′ be obtained by zeroing out all entries have magnitude
larger than 1/n0.1.

|OPTT − ⟨T, x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩| = |⟨T, x⃗⊗ y⃗⊗ u⃗⊗ v⃗− x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩|

⩽
100M

n0.4 .

The last inequality follows from observing that the right-hand side of the inner product has
Frobenius norm bounded by 2 and is non-zero in at most 4n3.2 entries. Thus, we can apply
Cauchy–Schwarz on the non-zero entries, and the Frobenius norm on T restricted to such entries
is at most M

n2 ·
√

4n3.2. Then the product state |πx⃗′ ,⃗y′ ,⃗u′ ,⃗v′⟩ satisfies, for ξ = (∏n
a=1(1 + |x′i |2)(1 +

|y′i|2)(1 + |u′i|2)(1 + |v′i|2))−1/2,

|⟨ψT|π⟩| = ξ
∣∣∣ ∑
i,j,k,l∈[n]

(Tijkl)
∗x′iy

′
ju
′
kv′l
∣∣∣ = ξ|⟨T, x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩| ⩾ ξ

(
OPTT −

10M
n0.4

)
.

Finally, by Lemma 3.7, ξ ⩾ e−
1
2 (∥x⃗′∥2

2+∥y⃗′∥2
2+∥u⃗′∥2

2+∥v⃗′∥2
2) ⩾ e−2.

Now we prove the upper bound. Let x⃗, y⃗, u⃗, v⃗ ∈ Cn be vectors attaining the optimum fidelity,
|⟨ψT|πx⃗,⃗y,⃗u,⃗v⟩| = OPT|ψT⟩. Here, we interpret the 4n-length product state as having 4 parameter
vectors of length n. We have

⟨ψT|πx⃗,⃗y,⃗u,⃗v⟩ = ξ
(

∑
i,j,k,l∈[n]

(Tijkl)
∗xiyjukvl

)
= ξ⟨T, x⃗⊗ y⃗⊗ u⃗⊗ v⃗⟩,

where ξ = (∏n
a=1(1 + |xa|2)(1 + |ya|2)(1 + |ua|2)(1 + |va|2))−1/2. Let x⃗′, y⃗′, u⃗′, v⃗′ be obtained by

zeroing out entries larger than 1/n0.1. Then by the same argument as above,

|⟨T, x⃗⊗ y⃗⊗ u⃗⊗ v⃗⟩ − ⟨T, x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩| = |⟨T, x⃗⊗ y⃗⊗ u⃗⊗ v⃗− x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩|

⩽
10M
n0.4 ∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2.

Using this, we have

|⟨ψT|πx⃗,⃗y,⃗u,⃗v⟩| ⩽ ξ
(
⟨T, x⃗′ ⊗ y⃗′ ⊗ u⃗′ ⊗ v⃗′⟩+ 10M

n0.4 ∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2

)
⩽ ξ∥x⃗′∥2∥y⃗′∥2∥u⃗′∥2∥v⃗′∥2OPTT +

10M
n0.4 ξ∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2. (17)

We split now into two cases. First, suppose that ∑n
a=1(

|xa|2
1+|xa|2 +

|ya|2
1+|ya|2 +

|ua|2
1+|ua|2 +

|va|2
1+|va|2 ) ⩽ n0.1.

This implies that
n

∑
a=1

(|x′a|2 + |y′a|2 + |u′a|2 + |v′a|2)

⩽ (1 + 1/n0.2)
n

∑
a=1

(
|x′a|2

1 + |x′a|2
+
|y′a|2

1 + |y′a|2
+
|u′a|2

1 + |u′a|2
+
|v′a|2

1 + |v′a|2
)

⩽ 2n0.1.
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In this case, using Lemma 3.7 and the norm bound and magnitude bound on x⃗′,

ξ ⩽

(
n

∏
a=1

(1 + |x′a|2)(1 + |y′a|2)(1 + |ũa|2)(1 + |ṽa|2)
)−1/2

⩽ e−
1
2 (∥x⃗′∥2

2+∥y⃗′∥2
2+∥u⃗′∥2

2+∥v⃗′∥2
2−∑n

a=1(|x′a|4+|y′a|4+|u′a|4+|v′a|4))

⩽ e−
1
2 (∥x⃗′∥2

2+∥y⃗′∥2
2+∥u⃗′∥2

2+∥v⃗′∥2
2−2n−0.1).

So, plugging this into (17),

|⟨ψT|πx⃗,⃗y,⃗u,⃗v⟩|

⩽ e−
1
2 (∥x⃗′∥2

2+∥y⃗′∥2
2+∥u⃗′∥2

2+∥v⃗′∥2
2−n−0.1)∥x⃗′∥2∥y⃗′∥2∥u⃗′∥2∥v⃗′∥2OPTT +

10M
n0.4 ξ∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2

⩽ e−2en−0.1
OPTT +

10M
n0.4 ξ∥x⃗∥2∥y⃗∥2∥u⃗∥2∥v⃗∥2

⩽ e−2
(

1 +
10

n0.1

)
OPTT +

10M
n0.2

⩽ e−2OPTT +
10

n0.1 +
10M
n0.2 ,

where we used that the maximum possible value of e−
1
2 θ2

θ is exactly e−1/2. This gives the desired
statement in the first case. In the second case, suppose that ∑n

a=1(
|xa|2

1+|xa|2 +
|ya|2

1+|ya|2 +
|ua|2

1+|ua|2 +

|va|2
1+|va|2 ) > n0.1. Then we can argue that the optimum value is very small: by Cauchy–Schwarz
and Lemma 3.10, for a sufficiently large n,

|⟨ψT|πx⃗,⃗y,⃗u,⃗v⟩| = |⟨ψT|Π⩽4 |πx⃗,⃗y,⃗u,⃗v⟩|
⩽ ∥|ψT⟩∥2∥Π⩽4 |πx⃗,⃗y,⃗u,⃗v⟩∥2

⩽ e−(2n0.1−4) log(2−4/n0.1)+(n0.1−4)

⩽ e−0.1n0.1
⩽

10
n0.2 ⩽

10M
n0.2 .

This completes the proof of the upper bound and we are done. ♦

Now we can complete the proof of Theorem 7.3.

Proof of Theorem 7.3. Without loss of generality, we may assume that the original m×m×m×m
tensor T that we are given is symmetric: otherwise, we can just symmetrize it and this only
decreases the Frobenius norm. We can further normalize such that ∥T∥F = 1. Then consider
U⊗4T for U ∈ Cn×m a Haar-random isometry, and the corresponding quantum state |ψU⊗4T⟩ as
defined in Definition 7.4. By Lemma 7.6,

e−2OPTU⊗4T −
10M
n0.2 ⩽ OPT|ψU⊗4T⟩ ⩽ e−2OPTU⊗4T +

10
n0.1 +

10M
n0.2

By Claim 7.5, with 0.99 probability we can take M = (10m)2, and because U is an isometry,
OPTU⊗4T = OPTT, so

e−2OPTT −
1000m2

n0.2 ⩽ OPT|ψU⊗4T⟩ ⩽ e−2OPTT +
10

n0.1 +
1000m2

n0.2 .

Taking n = Ω((m/ε)20) completes the proof: then, e−2(OPTT − ε) ⩽ OPT|ψU⊗4T⟩ ⩽ e−2(OPTT +

ε). So, finding the optimal product state fidelity to accuracy 0.01ε2 gives the spectral norm of
the tensor to ε additive error. ♦
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define a class of product states P ,

P = A1 ⊗ · · · ⊗ An = {|π1⟩ ⊗ · · · ⊗ |πn⟩ | |πk⟩ ∈ Ak}.

Let Pη be the states in the class with fidelity at least η with π:

Pη = {|π⟩ ∈ P | ⟨π| ρ |π⟩ ⩾ η}.

Then given parameters η, ε, δ ∈ (0, 1) with ε ⩽ η/2, we can output a set S such that Pη ⊆ S ⊆ Pη−ε

with probability ⩾ 1− δ using O((10ns)log 25
η / log 1

γ 1
ε2 log 1

δ ) copies of ρ.

The classical part of the algorithm is linear-time, costing O(nC), where C is the number of
copies of ρ used. The quantum gate complexity is also O(nC), where we consider a gate to be
an operation on a qudit; the only circuits we will need are single layers of single-qudit gates,
followed by measurement, to estimate quantities like ⟨π| ρ |π⟩ for |π⟩ ∈ P .

Claim A.2. In the set-up of Theorem A.1, |Pη | ⩽ (10ns)log 2
η / log 1

γ .

Proof. The basic idea is that Pη consists of a small number of balls, where a ball is the set of
elements of P close to a particular |π⟩ ∈ P . The number of balls is small because ρ must place
mass in the direction of every ball, and the mass of ρ is bounded.

We formalize this argument now. For ℓ = ⌊log 2
η / log 1

γ⌋, construct a net N ⊆ Pη with the
following properties.

1. For any |π⟩ ∈ Pη , there exists a |ϖ⟩ ∈ N such that |π⟩ and |ϖ⟩ differ in at most ℓ qudits;

2. Any distinct |π⟩ , |ϖ⟩ ∈ N differ in at least ℓ+ 1 qudits.

Such a net can be constructed greedily: start with an empty net, and while there is a violation of
condition 1, add the corresponding |π⟩ to the net. Let M be the matrix whose columns are the
elements of the net N = {|π(i)⟩}i. Then following the same argument as Claim 5.4,

∥M† M∥op ⩽ 1 + |N |γℓ+1 ⩽ 1 + |N |(η/2)

∥MM†∥op ⩾ tr(MM†ρ) = ∑
i
⟨π(i)|ρ|π(i)⟩ ⩾ |N |η

Together, we can conclude that |N | ⩽ 2
η .

Finally, by property 2 of the net, Pη is contained in the set of product states in P which differ
from an element of N in at most ℓ qudits. Consider some |π⟩ ∈ Pη . There are ∑ℓ

i=0 (
n
i )s

i ⩽

∑ℓ
i=0(ns)i ⩽ 2(ns)ℓ elements of P which differ from |π⟩ in at most ℓ qudits. So, |Pη | ⩽
|N |2(ns)ℓ ⩽ 4

η (ns)ℓ, which gives the desired bound. ♦

Now, we present the proof of Theorem A.1. The algorithm is given below: we start from
qudit 1 and iteratively add a qubit, maintaining at iteration m a set Sm of product states which
have good fidelity with ρ.
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Algorithm A.3 (Agnostic learning for discrete product state classes).

Input: Copies of an n-qubit state ρ, a class of n-qubit product states P = A1 ⊗ · · · ⊗ An,
with parameters η, γ, ε, δ as in Theorem A.1;

Output: A set of product states S such that Pη ⊆ S ⊆ Pη−ε with probability ⩾ 1− δ;

Procedure:
1: Let S0 = ∅;
2: for m from 1 to n do
3: Initialize Sm = ∅;
4: for all |π⟩ ∈ Sm−1 ⊗Am do
5: Estimate ⟨π| ρ[m] |π⟩ to ε/2 error with success probability ⩾ 1−

δ/(10ns)log 20
η / log 1

γ ;
6: if the estimate is at least η − ε/2 then
7: Add |π⟩ to Sm;
8: return Sn

Claim A.4 (Correctness). With probability ⩾ 1− δ, at the completion of Algorithm A.3, for
every m ∈ {0, 1, . . . , n},

Sm ⊇ {|π⟩ ∈ A1 ⊗ · · · ⊗ Am | ⟨π| ρ[m] |π⟩ ⩾ η}
Sm ⊆ {|π⟩ ∈ A1 ⊗ · · · ⊗ Am | ⟨π| ρ[m] |π⟩ ⩾ η − ε}

Proof. First, we consider the algorithm under the event that the algortihm never fails. We prove
by induction on m. The base case m = 0 is true trivially. For the inductive step, consider some
m > 0, and consider some |π⟩ ∈ A1 ⊗ · · · ⊗ Am such that ⟨π| ρ[m] |π⟩ ⩾ η. Let |π′⟩ be the
product state |π⟩ with the mth qubit traced out. Then

⟨π′| ρ[m−1] |π′⟩ ⩾ ⟨π| ρ[m] |π⟩ ⩾ η,

so |π′⟩ ∈ Sm−1 by the inductive hypothesis, and |π⟩ ∈ Sm−1 ⊗Am. Because we are assuming
that the estimation procedure succeeds, this means that |π⟩will be added to Sm, proving the first
equation of the claim. The second equation holds because, again assuming that the estimation
procedure always succeeds, all elements added to Sm have fidelity at least η − ε/2− ε/2 with
ρ[m].

To conclude, we account for failure. Supposing that the algorithm never fails, the second
equation in the claim along with Claim A.2 (applied on ρ[m], the state on the m-qudit subsystem)

implies that |Sm| ⩽ (10ms)log 2
η−ε / log 1

γ . So, on a successful run, the estimation procedure is

run at most ns · (10ns)log 2
η−ε / log 1

γ times, and so the failure probability is chosen such that the
probability a failure occurs is at most δ. ♦

The above claim implies that the output of the algorithm satisfies Pη ⊆ S ⊆ Pη−ε, which is
the desired correctness condition. What remains is to analyze the complexity. The dominating
cost is the estimation step, where the fidelity of (a subsystem of) ρ with a product state is

estimated to ε/2 error with failure probability δ/(10ns)log 20
η / log 1

γ . This step is run at most

s ·∑n
m=1|Sm| ⩽ ns · (10ns)log 2

η−ε / log 1
γ = O((10ns)log 20

η / log 1
γ ) times, by Claim A.4 and Claim A.2.
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Each estimation protocol costs O( 1
ε2 log((10ns)log 20

η / log 1
γ /δ)) copies of ρ, where we use the naive

algorithm of measuring in the appropriate basis and estimating the corresponding probability.

Remark A.5. The estimation procedure could also be done using randomized Clifford measure-
ments as in [HKP20], which reduces the sample complexity to poly-logarithmic in n. However,
computing the resulting estimators takes exponential time, making the resulting algorithm
computationally inefficient, except for limited settings, such as in the case of stabilizer product
states.

B Agnostic improper learning of matrix product states

The task of product state learning motivates a more general question: What ensembles of
“low-entanglement” states can we perform computationally-efficient agnostic learning for? One
physically-motivated ensemble is the class of low bond-dimension matrix product states, for
which the (non-agnostic) learning task was studied in [Cra+10].

Definition B.1 (Matrix product state with bond dimension r, open boundary condition). A
matrix product state (MPS) is a state over n total d-dimensional qudits that can be written as
follows

|ψ⟩ = ∑
s1,...,sn∈[d]n

∑
α1,...,αn∈[r]n

(
A(s1)

1

)
1,α1

(
A(s2)

2

)
α1,α2

. . .
(

A(sn−1)
n−1

)
αn−2,αn−1

(
A(sn)

n

)
αn−1,αn

|s1, . . . , sn⟩ ,

where for all i = 2, . . . , n− 1 and all si, we have that A(si)
i are r× r complex matrices, and for

i ∈ {1, n} and all si. The dimension r is known as the bond dimension of the MPS. We let MPSn,d,r

denote the set of all such states.6

A MPS has a natural representation in the form of a tensor network as in Figure 1, where here
each Ai represents the concatenation of all of the A(si)

i into a 3-tensor.

r

d d

r

d d

A1 A2 An−1 An

Figure 1: Tensor network representation of a matrix product state with bond dimension r.

In this section we present an agnostic learning algorithm for matrix product states very
closely based on the algorithm from [Cra+10]. In fact, it is nearly identical to the algorithm
presented there, but with different parameters. For completeness, here we will present a more
or less self-contained description of the algorithm, and a proof of its correctness.

Unlike in the product state setting, given a state that is close to a matrix product state,
we will not learn a matrix product state with the same bond dimension, but one whose bond
dimension is a polynomial-factor higher, hence “agnostic improper learning”. At a very high
level, the algorithm of [Cra+10] demonstrates that one can successively learn unitary rotations
that act on few qubits at a time that allow you to disentangle qubits successively. This is because

6Matrix product states with periodic boundary conditions are defined by taking the trace of the product of the

A(si)
i , or equivalently enforcing that the first index of A(s1)

1 is equal to αn, but we do not consider these in this paper.
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when ρ is a MPS (or very close to one), then it has low Schmidt rank along every cut in the
tensor network, and consequently essentially all of the information about ρ is contained in a
r-dimensional subspace along every cut. While this is obviously not true when ρ is arbitrary,
we show that we can find poly(n, d, r, 1/ε)-dimensional subspaces which do preserve all of the
correlation structure between ρ and any matrix product state.

Theorem B.2 (Agnostic improper learning of matrix product states). Suppose we are given copies
of an n-qudit state ρ. Then given parameters ε, δ ∈ (0, 1) and a bond dimension parameter r, we can
output a description of a matrix product state |ϕ̂⟩ with bond dimension dn2 · poly(r, 1/ε) such that,
with probability ⩾ 1− δ,

⟨ϕ̂|ρ|ϕ̂⟩ ⩾ max
|ϕ⟩∈MPSr

⟨ϕ|ρ|ϕ⟩ − ε. (18)

This algorithm uses N = poly(n, d, r, 1/ε, log 1
δ ) copies of ρ, along with poly(N) quantum gates and

classical overhead.

We will use the following notion of Schmidt rank and decomposition.

Definition B.3. Let |ϕ⟩ be an n-qudit state, i.e. a vector in
(
C

d)⊗n. For i = 1, . . . , n we say
that the Schmidt decomposition of |ϕ⟩ at position i is the Schmidt decomposition of |ϕ⟩ when

viewed as an element of the bipartite system A⊗ B where A =
(
Cd)⊗i and B =

(
Cd)⊗(n−i).

We correspondingly say that the Schmidt rank of |ϕ⟩ at position i is the rank of this Schmidt
decomposition.

Note that a matrix product state with bond dimension r has Schmidt rank r across all
bipartitions. We will also need the following two operations:

Definition B.4 (Disentangling unitary). Let W be a subspace of (Cd)⊗κ of dimension dκ−1. We
say a unitary matrix U : (Cd)⊗κ → (Cd)⊗κ is a disentangling unitary for W if for all |ϕ⟩ ∈ W,
we have that U |ϕ⟩ = |0⟩ ⊗ |ψ⟩ for some state |ψ⟩ on the remaining κ − 1 qudits, and for all |ϕ⟩
orthogonal to W, we have tr

[
(|0⟩⟨0| ⊗ I)U |ϕ⟩⟨ϕ|U†] = 0.

Lemma B.5 ([ICKHC16]). Given a classical description of a dκ−1-dimensional subspace W, there is an
implementation of the disentangling unitary in time poly(dκ), when d is a power of 2.

We also need a result concerning the tomography of sub-normalized states in trace distance,
inspired by the sub-normalized fidelity-squared tomography algorithm of [FO24].

Lemma B.6 (Sub-normalized tomography). Let ρ be a quantum state on r registers of dimension
d. Let Π = |0i⟩⟨0i| ⊗ I⊗r−i and µ = tr[Πρ], and δ, ε > 0. Then there exists an algorithm that
performs tomography of σ = ΠρΠ to within trace distance error ε with failure probability δ using
O(µ · d3(r−i)

ε2 log(1/δ)) copies of ρ and in time poly(dr−i, 1/ε, log(1/δ)).

Proof. Similar to [FO24], the algorithm first takes m = O(µ · d3(r−i)

ε2 log(1/δ)) copies of ρ, and
measures the PVM {Π, I −Π} on all of them. It keeps all of the copies that had measurement
outcome Π, and is thus left with (ρ|Π)⊗m′ , where ρ|Π = ΠρΠ/µ and m′ ∼ Binomial(m, µ).
Then the algorithm then traces out the first i registers (which are in the state |0i⟩⟨0i|), and
performs tomography on the remaining m′ states with error ε/2µ and failure probability
δ/2. to produce an estimate ρ̂|Π. Since we want a (runtime) efficient algorithm, we use the
random Clifford tomography technique described by [KRT17], which uses sample-complexity
O((d′)3/(ε′)2 log(1/δ′)) (where d′ is the dimension of the input to this subroutine, ε′ is the error
parameter given to this subroutine and δ′ is the failure probability of this subroutine), and runs
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in polynomial time in all of those parameters. Substituting d′ = dr−i and ε′ = ε/µ, this step
requires m′ = O(µ2(dr−i)3/ε2) copies of the post-selected state. Finally, the algorithm outputs
σ̂ = (m′/m)ρ̂|Π.

In order to show that the algorithm produces an estimate with the correct trace norm bound,
we can write the following:

∥σ− σ̂∥1 = ∥µρ|Π − (m′/m)ρ̂|Π∥1

= µ∥ρ|Π − (m′/µm)ρ̂Π∥1 .

We can apply the triangle inequality and linearity of expectation to get the following:

∥ρ|Π − (m′/µm)ρ̂Π∥1 = ∥ρ|Π − ρ̂|Π∥1 + ∥(1− (m′/(µm)))ρ̂Π∥1 .

We want to bound the probability that this value is greater than ε. From the guarantee of
the tomography algorithm, the first term is bounded by ε/2µ except with probability δ/2.
From Hoeffding’s inequality, as long as m ⩾ 2 log(2/δ)µ/ε, the second term is also bounded
by ε/(2µ) with except with probability δ/2. Plugging these back into the difference in norm
of σ and applying a union bound, we get that the trace-norm error is at most ε except with
probability δ, as desired. Since we needed O(µ2 d3(r−i)

ε2 log(1/δ)) copies of the state to perform
the tomography, and in expectation µm copies survive the measurement of Π, we need to start
with O(µ · d3

ε2 log(1/δ)) copies of ρ, as desired. ♦

Note that in the remainder of this section, r− i will be roughly logd(poly), where poly is
some polynomial in all parameters. Thus, the scaling in dr−i will be polynomial in the inputs.

Our overall algorithm proceeds now as follows, quite similarly to [Cra+10]. Let ρ be the
overall, unknown state. Let τ = ε2

9n2r4 , and let κ = ⌈logd(1/τ)⌉+ 1. We will produce a sequence
of disentangling unitaries U0, U1, . . . , Un−κ+1, where the j-th unitary will act only on the (j)-th
through (j + κ)-th sites.7 We will also maintain a sequence of intermediate unnormalized states
ρ′0, . . . , ρ′n−κ+1 which we can efficiently prepare given ρ and the Ui. Each state ρ′i will act on the
last n− i qudits. Initially set U0 = I and ρ′0 = ρ0 = ρ.

Then, for all i ⩾ 1, given ρ′i−1, form σi = tr⩾κ(ρ′i−1), and perform state tomography to obtain
the classical description of a state σ̂i satisfying

∥σ̂i − σi∥1 ⩽ τ (19)

with probability 1− δ/n. Let Wi denote the subspace spanned by the singular values of σ̂i that
exceed τ. Note that since σ̂ has trace 1, the subspace W has dimension at most 1/τ < dκ−1.
Extend this subspace arbitrarily to have dimension dκ−1, and let Ui be a disentangling unitary
for this subspace. Finally, let ρ′i be the result of projecting the first qudit of Uiρ

′
i−1U†

i onto |0⟩⟨0|.
After we have produced these disentangling unitaries U1, . . . , Un−κ+1, form ρ′n−κ+1 and

σ̂n−κ+1 as before, and let |ψ⟩ denote the top eigenvector of σ̂n−κ+1. Our final estimate of ρ is the
state |ϕ̂⟩ given by

|ϕ̂⟩ = (U1 . . . Un−κ+1)
(
|0n−κ⟩ ⊗ |ψ⟩

)
.

The formal pseudocode for this algorithm is given in Algorithm B.8.

Lemma B.7. |ϕ̂⟩ is a matrix product state with bond dimension dn2 poly(r, 1/ε).
7Here we slightly abuse notation and also let Ui denote the extension of the disentangling unitary to the entire

space which acts on the identity outside of the aforementioned sites.
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Proof. We can proceed by writing out the entries of the state |ϕ̂⟩. Letting κ be the number of qu-
dits each unitary (and |ψ⟩ acts on), we can write |ψ⟩ = ∑tn−κ+1,...,tn−1,sn

αtn−κ+1,...,tn−1,sn |tn−κ+1, . . . , tn−1, sn⟩.
We can also write the unitary Un−κ+1 as follows

Un−κ+1 = ∑
sn−κ ,...sn−1
tn−κ ,...,tn−1

(Un−κ+1)
(sn−κ ,...,sn−1)
(tn−κ ,...,tn−1)

|sn−κ, . . . , sn−1⟩⟨tn−κ, . . . , tn−1| .

Writing the product of these, we have the following state after applying a single unitary

Un−κ+1(|0⟩ |ψ⟩) = ∑
sn−κ ,...,sn

∑
tn−κ−1,...,tn−1

(
(Un−κ+1)

(sn−κ ,...,sn−1)
(0,tn−κ+1,...,tn−1)

αtn−κ+1,...,tn−1,sn

)
|sn−κ, . . . , sn⟩

Then, writing down the 3-tensor with entries(
A(sn)

1

)
1,(tn−κ ,...,tn−1)

= αtn−κ+1,...,tn−1,sn(
A(sn−κ ,...,sn−1)

2

)
(tn−κ+1,...,tn−1)

= (Un−κ+1)
(sn−κ ,...,sn−1)
(0,tn−κ+1,...,tn−1)

,

we find that this state is exactly a matrix product state, where the bond dimension is equal
to the number of entries in the inner sum, or dκ−1 ⩽ 9dr4n2

ε2 (note that taking the ceiling in the
definition of κ causes us to incur an additional factor of d here). Also note that the two tensors
are indexed by disjoint registers, as desired. Applying this idea recursively to get the entries of
every tensor Ai, we find that we can express every tensor for, i ⩾ 2, as follows(

A(sn+1−i)
i

)(an−κ+2−i ,...,an−i)

(bn−κ+3−i ,...,bn+1−i)
= (Un−κ+3−i)

(an−κ+2−i ,...,an−i ,sn+1−i)
(0,bn−κ+3−i ,...,bn+1−i)

.

Writing out the matrix product state that results from these tensors, we will get |ϕ̂⟩, and this is
a matrix product state with open boundary condition, with bond dimension dn2 poly(r, 1/ε)

since the dimensions of both the a’s and b’s is dκ−1. Note that we can reverse the order of the si

to write this in the canonical form from Definition B.1. This completes the proof that we have
produced a matrix product state with the desired bond dimension. ♦
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Algorithm B.8 (Agnostic learning of matrix product states).

Input: Copies of an unknown quantum state ρ ∈ R1⊗ . . .⊗Rn where each Ri is dimension
d, such that there exists matrix product state with bond dimension at most r with
fidelity η with ρ, and error parameter ε and failure probability δ.

Output: A description of a MPS

Procedure:
1: Let τ = ε2

9n2r4 ;
2: Let κ = ⌈logd(1/τ)⌉+ 1;
3: Let ρ′0 = ρ;
4: for i from 1 to n− κ do
5: Let σi = tr⩾κ

(
ρ′i−1

)
;

6: Let σ̂ be the output of Tomography with error τ and failure probability δ/n on
O
(

d3

τ5 log(n/δ)
)

copies of σi;
7: Let Ui be the disentangling unitary for the extension of the ⩾ τ subspace of σ̂i;
8: Apply Ui to all copies of ρ′i−1 and project onto |0⟩⟨0| to get copies of

ρ′i = trRi−1

(
(|0⟩⟨0| ⊗ I)Uiρ

′
i−1U†

i (|0⟩⟨0| ⊗ I)
)

;

9: Let ρ∗ be the remaining state on the final κ qubits after applying all of the disen-
tangling unitaries and projecting onto |0n−κ⟩:

ρ∗ = trR<n−κ ((|0n−κ⟩⟨0n−κ| ⊗ I)Un−κ . . . U1ρU†
1 . . . U†

n−κ(|0n−κ⟩⟨0n−κ| ⊗ I));

10: Let ρ̂∗ be the output of Tomography on with error parameter τ and failure proba-
bility δ/n on O( d3

τ5 log(n/δ)) copies of ρ∗.
11: Let |ψ⟩ be the top eigenvalue of ρ̂∗;
12: return the MPS U†

1 . . . U†
n−κ(|0n−κ⟩ ⊗ |ψ⟩).

We now proceed with the proof of correctness for this algorithm.

Lemma B.9. Let ρ, σ be unnormalized mixed states satisfying ∥ρ− σ∥1 ⩽ η. Let W be the span of all
eigenvectors of σ with eigenvalues exceeding η. Then, letting ΠW denote orthogonal projection onto W,
we have that ∥(I −ΠW)†ρ(I −ΠW)∥∞ ⩽ 2η.

Proof. Suppose not, i.e. there exists some state |ϕ⟩ so that |ϕ⟩ is orthogonal to W and so that
⟨ϕ|ρ|ϕ⟩ > 2η. But then by duality, we have

∥ρ− σ∥1 ⩾ tr((ρ− σ) |ϕ⟩⟨ϕ|) > η ,

which is a contradiction. ♦

We will prove the correctness of this algorithm inductively. For all i = 1, . . . , n − κ + 1,
define the matrices

Ei = Ui · . . . ·U1 , and ρi = E†
i

(
|0i⟩⟨0i| ⊗ ρ′i

)
Ei . (20)

Note that by construction, Ui only touches qudits i through i + κ. As an immediate consequence
of this, Ei acts nontrivially only on the first i + κ qudits.
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We will say that a call to Tomography succeeds if it outputs a σ̂i satisfying Equation (19). By a
union bound, since we do at most n calls to Tomography, all calls succeed simultaneously with
probability at least 1− δ. For the rest of the section, condition on the event that this occurs. We
first observe the following:

Lemma B.10. For all i = 1, . . . , n− κ + 1, we have that ρi ⪯ ρi−1.

Proof. By properties of post-selection, we have that |0⟩⟨0| ⊗ ρ′i ⪯ Uiρ
′
i−1U†

i . The claim then
follows from unraveling the definitions. ♦

Our main claim is the following:

Lemma B.11. Fix i ∈ {1, . . . , n− κ + 1}. Let Ei and ρi be defined as above, and suppose that every
step of Tomography succeeds. Suppose that |ϕ⟩ has Schmidt rank at most r at position i + κ. Then,

|⟨ϕ|ρi−1|ϕ⟩ − ⟨ϕ|ρi|ϕ⟩| ⩽
ε

2n
.

Proof. Let |ϕ′⟩ = Ei−1 |ϕ⟩. Since Ei−1 only acts non-trivially on the first i + κ− 1 qudits, |ϕ′⟩ has
the same Schmidt rank as |ϕ⟩ at position i + κ, so in particular it has Schmidt rank at most r
at position i + κ. Write |ϕ′⟩ = |0k−1⟩ |ψ⟩+ |⊥⟩, where |⊥⟩ is orthogonal to all states beginning
with |0k−1⟩. By definition, |ψ⟩ has Schmidt rank at most r at position κ. By definition, we have
that

⟨ϕ|ρi−1|ϕ⟩ = ⟨ψ|ρ′i−1|ψ⟩ ,

and additionally, we have that

⟨ϕ|ρi|ϕ⟩ = ⟨ϕ′|U†
i

(
|0i⟩⟨0i| ⊗ ρ′i

)
Ui |ϕ′⟩

= ⟨ψ|U†
i
(
|0⟩⟨0| ⊗ ρ′i

)
Ui |ψ⟩

= ⟨ψ| (ΠW ⊗ I)†ρ′i−1(ΠW ⊗ I) |ψ⟩ ,

where in the second line we use the fact that the extension of Ui acts as the identity outside of
qudits i through i + κ, the third line follows because ρ′i is obtained by postselecting on outcome
|0⟩, and the last line follows since Tomography succeeds, and Lemmas B.9 and B.12, the latter of
which is proven below. ♦

Lemma B.12. Let A, B be two Hilbert spaces, and let ρ be a density matrix over A⊗ B. Let |ϕ⟩ be a
pure state in A⊗ B with Schmidt rank at most r. Let W ⊂ A be a subspace, with ΠW denoting the
projection onto W, such that ∥(I −ΠW)† trB(ρ)(I −ΠW)∥∞ ⩽ η. Then∣∣∣⟨ϕ| (ΠW ⊗ I)†ρ(ΠW ⊗ I) |ϕ⟩ − ⟨ϕ|ρ|ϕ⟩

∣∣∣ ⩽ 2r
√

η .

Proof. First, assume that |ϕ⟩ has Schmidt rank 1, i.e. |ϕ⟩ = |a⟩ |b⟩. Let |c⟩ = |a−ΠW a⟩. Then∣∣∣⟨ϕ| (ΠW ⊗ I)†ρ(ΠW ⊗ I) |ϕ⟩ − ⟨ϕ|ρ|ϕ⟩
∣∣∣ = |⟨b| ⟨ΠW a| ρ |ΠW a⟩ |b⟩ − ⟨b| ⟨a| ρ |a⟩ |b⟩|

⩽ |⟨b| ⟨c| ρ |ΠW a⟩ |b⟩|+ |⟨b| ⟨a| ρ |c⟩ |b⟩|
⩽ 2∥ρ |c⟩ |b⟩∥ ,

where the last line follows from Cauchy-Schwarz. To finish, we observe that

∥ρ |c⟩ |b⟩∥2 = tr(ρ2 |c⟩⟨c| ⊗ |b⟩⟨b|)
⩽ tr(ρ |c⟩⟨c| ⊗ |b⟩⟨b|)
⩽ ⟨c| trB(ρ)|c⟩
⩽ η ,

since c is orthogonal to W. The case of general Schmidt rank then follows from linearity. ♦
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Proof of Theorem B.2. We first concern ourselves with the sample complexity and runtime of
Algorithm B.8. From Lemma B.6, taking the dimension to be dκ ⩽ d/τ, error parameter to be τ

and failure probability δ/n, we can perform tomography on the sub-normalized state σi with
sample complexity O( d3

τ5 log(n/δ)) = O
(

d3n10r10

ε10 log(n/δ)
)
= poly(n, d, r, 1/ε, log(1/δ)) (note

that the algorithm takes samples of a unitary applied to ρ, the original state), and runtime that
is polynomial in the same parameters. The overall algorithm performs this n− κ times. In
addition to tomography, the algorithm also applies disentangling unitaries to the state. From
Lemma B.5, given a description of a subspace W of dimension dκ−1, there is an implementation
of the disentangling unitary in time poly(dκ) = poly(d, r, n, ε), when d is a power of 2. Thus,
the whole algorithm run in polynomial time and uses a polynomial number of samples of ρ.

We now turn our attention to correctness. Let |ϕ⟩ be a matrix product state with bond
dimension r. Since such a MPS has Schmidt rank at most r at every position, by iteratively
applying Lemma B.11 with our chosen parameters, we obtain that | ⟨ϕ|ρ|ϕ⟩ − ⟨ϕ|ρi−κ+1|ϕ⟩ | ⩽
ε/2. Together with the fact that the last call to Tomography succeeds, this implies that the vector
|ψ⟩ satisfies ⟨ψ|ρ′n−κ+1|ψ⟩ ⩾ ⟨ϕ|ρ|ϕ⟩ − ε. To conclude, we apply Lemma B.10 and the previous
bound to obtain that

⟨ϕ̂|ρ|ϕ̂⟩ = ⟨ϕ̂|ρ0|ϕ̂⟩
⩾ ⟨ϕ̂|ρn−κ+1|ϕ̂⟩
⩾ ⟨ϕ|ρ|ϕ⟩ − ε.

The result follows by taking a supremum over all matrix product states. ♦
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