
Separating Quantum and Classical Advice with Good Codes
John Bostanci1, Andrew Huang2, and Vinod Vaikuntanathan2

1Columbia University, New York, NY
2Massachusetts Institute of Technology, Cambridge, MA

Abstract

We show an unconditional classical oracle separation between the class of languages that can be verified using
a quantum proof (QMA) and the class of languages that can be verified with a classical proof (QCMA). Compared
to the recent work of Bostanci, Haferkamp, Nirkhe, and Zhandry (STOC 2026), our proof is conceptually and
technically simpler, and readily extends to other oracle separations. In particular, our techniques yield the first
unconditional classical oracle separation between the class of languages that can be decided with quantum advice
(BQP/qpoly) and the class of languages that can be decided with classical advice (BQP/poly), improving on the
quantum oracle separation of Aaronson and Kuperberg (CCC 2007) and the classically-accessible classical oracle
separation of Li, Liu, Pelecanos and Yamakawa (ITCS 2024).

Our oracles are based on the code intersection problem introduced by Yamakawa and Zhandry (FOCS 2022),
combined with codes that have extremely good list-recovery properties.

1

Contents
1 Introduction 1

1.1 Our Work . 1

2 Technical Overview 2

3 Discussion and Open Questions 6
3.1 Structured versus randomness in classical oracle separations . 6
3.2 QMA-completeness of a decoding problem . 6
3.3 Simplifications to the separation . 7

4 Preliminaries 8
4.1 Notation . 8
4.2 Probability and Complexity Theory . 8
4.3 Coding Theory . 9
4.4 Yao’s Box Problem and Non-Uniform Advice . 11

5 The Generalized Code Intersection Problem 12
5.1 Definitions and Basic Facts . 12
5.2 Technical Lemmas . 14
5.3 The Biased Yamakawa-Zhandry Algorithm . 17

6 Separating QMA from QCMA 19
6.1 The QMA Proof System . 20
6.2 Non-Existence of QCMA Proof Systems . 21

7 Separating BQP/qpoly from BQP/poly 23

A Duals of Multiplicity Codes 29

B Diagonalization Arguments 30

i

1 Introduction
We study the question of whether quantum proofs and advice provide more power than their classical counter-
parts. In the language of complexity theory, we consider whether the classes QMA and QCMA, and BQP/qpoly
and BQP/poly, are distinct. These questions, first posed by [AN02] (for proofs) and [NY04] (for advice), have
been long-standing open problems in the field of quantum complexity theory.

Given that unconditional separations seem out of reach today since theywould imply breakthrough results like
P ≠ PSPACE, research attention has shifted to providing oracular evidence for their separation. The first progress
towards this came from the seminal work of Aaronson and Kuperberg [AK07], who introduced the weaker notion
of a unitary, or quantum, oracle as a means to separate the classes of QMA and QCMA and asked whether their result
could be strengthened to a classical oracle separation. After a long series of works which demonstrated either con-
ditional or non-standard separations [FK15, LLPY23, NN24, BDK24, Zha24, LMY25], the first unconditional
classical oracle separation between QMA and QCMA appeared in the recent work of [BHNZ25].

The oracle used in the separation of [BHNZ25] (which was introduced in the paper of Zhandry [Zha24])
leverages one of the most natural quantum properties to separate quantum from classical computers: whether
two functions are related by the Hadamard transform. This idea was first exploited in the work of [Aar10], who
presented the “Forrelation” problem, i.e., deciding whether two functions are related by the Hadamard transform,
as a candidate (oracle) separation between BQP and PH. The works of [Zha24] and [BHNZ25] lift this problem
to QMA with a variant dubbed “spectral Forrelation”. The separation of [BHNZ25] employs sophisticated tech-
niques to analyze Forrelated oracles, including ideas inspired by mathematical physics and Hamiltonian learning.
It is natural to wonder whether one can separate QMA fromQCMA without using this heavy technical machinery.

Question 1: Is there a conceptually simpler classical oracle separation between QMA and QCMA?
A closely related problem to separating QMA from QCMA is that of separating BQP/qpoly, problems that can

be solved with quantum advice, from BQP/poly, problems that can be solved with classical advice. In addition to
their quantum oracle separation between QMA and QCMA, Aaronson and Kuperberg also gave a unitary oracle
separation forBQP/qpoly and BQP/poly and asked if this too could be lifted to a classical oracle separation. While
there is no formal equivalence relating advice and proof separations, one paradigm towards advice separations
follows the general outline of [AK07]. Their advice separation begins with a hard quantum search problem (which
is also used in their proof separation), and hides the value of a random language behind an oracle that expects
to receive the answer to that quantum search problem. The classical oracle separation of [BHNZ25], being a
kind of “classicalization” of the Aaronson-Kuperberg oracle, has a similar quantum search problem associated
with it. However, since a classical oracle can no longer directly check the answer to a quantum search problem,
obtaining a classical oracle separation between BQP/qpoly and BQP/poly seems to necessitate the use of a hard
classical search problem instead.

A parallel line of work starting from the paper of Yamakawa and Zhandry [YZ24] studies the “code intersec-
tion” problem. The code intersection problem exploits another way in which quantum algorithms can exploit
structure in functions: the ability to realize the convolution theorem as decoding in the Fourier basis (first noticed
in [Reg09]). [YZ24] used this to formulate a TFNP problem that can be solved by an efficient quantum computer
but not by a classical one: given a random oracle 𝐻 and code 𝐶 ⊆ Σ𝑛, find a codeword that hashes to the all
zeros string. This problem was later modified in the works of [Liu23, LLPY23, BDK24] to make some progress
towards a full separation between QMA and QCMA by restricting/modifying the query model in question (i.e.
by enforcing classical-only access or bounded adaptivity). Crucially, unlike the spectral Forrelation oracle, the
code intersection problem comes with a classical search problem, which [LLPY23] uses to lift their “classically-
accessible” oracle search problem to get a similar (non-standard) separation between BQP/qpoly and BQP/poly.
This leaves open the following question:

Question 2: Is there a (standard) classical oracle separation between BQP/qpoly and BQP/poly?

1.1 Our Work
We show that both these questions can be resolved using the “code intersection problem” studied in the work of
Yamakawa and Zhandry [YZ24], combined with codes that have extremely good list-recovery properties. An
important part of showing verifiable quantum advantage in [YZ24] was ruling out randomized classical algo-
rithms for solving their problem. At a high level, a classical algorithm might be able to find a few symbols that

1

hash to zero, but it has no way of knowing whether they can be combined to form a good codeword until it tries
almost every combination. As long as most (small) sets of symbols overlap with very few codewords, the chance
that a classical algorithm stumbles upon a codeword which hashes to the right value is exceedingly unlikely.

One would expect that for a truly random code, no large collection of codewords can have large overlap with
a small set of symbols. Inspired by the idea of pseudorandomness presented by [LMY25, Zha24], one might hope
to find linear codes that mimic the properties of a random code, in this case, codes with extremely good list-
recoverability. We formalize this intuition by showing that by substituting folded Reed-Solomon (FRS) codes in
the construction of [YZ24] with multiplicity codes (although any code with good expansion properties would
suffice), we can indeed separate QMA from QCMA.

Theorem 1.1 (Informal). There exists a classical oracle 𝒪 such that QMA𝒪 ⊈ QCMA𝒪.
Our separation, in addition to admitting a much simpler proof, has an additional benefit over the result of

[BHNZ25]: our more structured oracle problem is naturally associated with a TFNP problem, allowing us to lift
our result to provide the first unconditional classical oracle separation between BQP/qpoly from BQP/poly
in a straightforward manner.1

Theorem 1.2 (Informal). There exists a classical oracle 𝒪 such that BQP𝒪/qpoly ⊈ BQP𝒪/poly.
In fact, our oracle separates NP𝒪 ∩ coNP𝒪 ∩ BQP𝒪/qpoly from BQP𝒪/poly, which seems to indicate a struc-

tural difference between our oracle and separations based on spectral Forrelation [Zha24, BHNZ25] or expander
mixing [Lut11, NN24, LMY25], which feel like they originate from QMA-complete problems.

2 Technical Overview
The Yamakawa-Zhandry Algorithm. Our separation begins with the code intersection problem [YZ24]:
given a code 𝐶 ⊆ Σ𝑛 = (𝔽𝑠

𝑞)𝑛, function 𝐻 ∶ [𝑛] × Σ → {0, 1}, and hash 𝑥 ∈ {0, 1}𝑛, find a codeword 𝑐 ∈ 𝐶
such that 𝐻(𝑖, 𝑐𝑖) = 𝑥𝑖 for all 𝑖 ∈ [𝑛] (we will use the shorthand 𝐻(𝑐) = 𝑥 to refer to this constraint). Yamakawa
and Zhandry show that when given oracle access to 𝐻 , this problem has an efficient quantum algorithm but
no (uniform) classical ones, giving a relativized separation between FP and FBQP. As our result will require
modifying the Yamakawa-Zhandry algorithm, we begin by briefly explaining how it works.

We begin by noting that it suffices to be able to produce the state

|𝜓⟩ ∝ ∑
𝑣∶𝑣∈𝐶 and 𝐻(𝑣)=𝑥

|𝑣⟩ = ∑
𝑣∈Σ𝑛

𝟙𝐻,𝑥(𝑣) ⋅ 𝟙𝐶(𝑣) |𝑣⟩ ,

where 𝟙𝐻,𝑥(⋅) and 𝟙𝐶(⋅) are indicator functions for the event 𝐻(𝑣) = 𝑥 and for the event 𝑣 ∈ 𝐶, respectively.
Taking inspiration from Regev’s reduction from SIS to LWE [Reg09], Yamakawa and Zhandry observe that |𝜓⟩
is the pointwise product of the states

|𝜙1⟩ ∶= |𝜙1(𝑥)⟩ ∝ ∑
v∈Σ𝑛∶𝐻(v)=𝑥

|v⟩ =
𝑛

⨂
𝑖=1

∑
𝑣𝑖∈Σ∶𝐻(𝑖,𝑣𝑖)=𝑥𝑖

|𝑣𝑖⟩ and |𝜙2⟩ ∝ ∑
v∈𝐶

|v⟩ ,

both of which can be prepared efficiently given access to 𝐻 . By the convolution theorem, we know that
QFT𝑞 |𝜓⟩ ∝ QFT𝑞(|𝜙1⟩ ⊙ |𝜙2⟩) = QFT𝑞 |𝜙1⟩ ⋆ QFT𝑞 |𝜙2⟩ ,

where ⊙ denotes the point-wise product of two vectors, and ⋆ their convolution. Therefore, it suffices to effi-
ciently prepare the state |goal⟩ ∶= QFT𝑞 |𝜙1⟩ ⋆ QFT𝑞 |𝜙2⟩, as QFT−1

𝑞 |goal⟩ = |𝜓⟩. If 𝐶 is a 𝔽𝑞-linear code, then
QFT𝑞 |𝜙2⟩ is simply the uniform superposition over the dual code 𝐶⟂, so we can produce the states

QFT𝑞 |𝜙1⟩ ⊗ QFT𝑞 |𝜙2⟩ ∝ ∑
e∈Σ𝑛

√𝒟𝐻,𝑥(e) |e⟩ ⊗ ∑
v∈𝐶⟂

|v⟩

1A similar idea appeared in [LLPY23], where a variant of the Yamakawa-Zhandry problemwas used to give a separation between quantum
and classical advice for algorithms which are only allowed classical access to all oracles. As we will see later, our separation strictly improves on
this result since we rule out all BQP/poly algorithms with quantum oracle access while only requiring a single classical query given quantum
advice.

2

𝑈add↦ ∑
e∈Σ𝑛,v∈𝐶⟂

√𝒟𝐻,𝑥(e) |e⟩ |v⟩ |v+ e⟩
𝑈sub↦ ∑

e∈Σ𝑛,v∈𝐶⟂
√𝒟𝐻,𝑥(e) |0⟩ |v⟩ |v+ e⟩ ,

while our desired state is

|goal⟩ = QFT𝑞 |𝜙1⟩ ⋆ QFT𝑞 |𝜙2⟩ ∝ ∑
v∈𝐶⟂,e∈Σ𝑛

√𝒟𝐻,𝑥(e) |v+ e⟩ ,

where 𝒟𝐻,𝑥(⋅) is the density function of QFT𝑞 |𝜙1⟩ (here, we are ignoring phases for simplicity of exposition).
For a completely random function 𝐻 and a fixed 𝑥, we observe that 𝒟𝐻,𝑥(⋅) will have roughly half of its weight
on 0 in each coordinate (since around half of all symbols in each coordinate should hash to 0 or 1), while the
remaining half of its weight will be close to uniform over nonzero symbols. By taking 𝐶 to be a folded Reed-
Solomon (FRS) code with sufficiently high rate, Yamakawa and Zhandry show that one can efficiently decode
𝐶⟂ from errors over 𝒟𝐻,𝑥(⋅) with high probability and consequently prepare |goal⟩ as desired.

Lifting the Separation. The obvious issue in using the code intersection problem to separate QMA from
QCMA, however, is that bothQMA andQCMA algorithms canmake quantum oracle access to𝐻 , and our problem
is already in BQP! Thus, we must make some modifications to the problem at hand.

First, as observed by [Liu23], the first phase of this algorithm can be made non-adaptive: the state |𝜙2⟩ depends
only on 𝐶, while |𝜙1⟩ depends only mildly on 𝑥, since we can simply prepare all 2𝑛 preimage states

∣𝐻−1
1 (0)⟩ ∶= ∑

𝑥∈Σ∶𝐻(1,𝑥)=0
|𝑥⟩ , … , ∣𝐻−1

𝑛 (1)⟩ ∶= ∑
𝑥∈Σ∶𝐻(𝑛,𝑥)=1

|𝑥⟩

before selecting |𝜙1⟩ when given 𝑥. On the other hand, the second phase does not require access to 𝐻 , and should
work equally well for all 𝑥. Therefore, if we are given the state

|adv𝐻⟩ ∶=
𝑛

⨂
𝑖=1

∣𝐻−1
𝑖 (0)⟩ ⊗

𝑛
⨂
𝑖=1

∣𝐻−1
𝑖 (1)⟩ ⊗ |𝜙2⟩

as our quantum proof or advice, we can produce |𝜙1(𝑥)⟩ ∶= ⨂𝑛
𝑖=1 ∣𝐻−1

𝑖 (𝑥𝑖)⟩ for any 𝑥 and use it to produce a
solution to the code intersection problem for 𝑥 without access to 𝐻 ! We can therefore replace 𝐻 with the much
weaker oracle 𝑂𝐻(𝑥, 𝑣) that simply verifies if the vector 𝑣 hashes to 𝑥.

Of course, this problem is still in NP ⊆ QCMA, since for a fixed 𝑥, the prover can always send any codeword 𝑣
that hashes to 𝑥! Luckily, we claim that this is pretty much the only thing that the prover can do. To operationalize
this intuition, we note that our quantum proof/advice is in some sense encodingmany codewords alongwith their
hashes in superposition. Thus, taking some inspiration from [LLPY23, BDK24], we define the Code Intersection
Subset Size problem as follows:

Estimate the size of a set 𝐸 ⊆ {0, 1}𝑛 × Σ𝑛, which is promised to either be the full set {0, 1}𝑛 × Σ𝑛

or a small subset 𝐸 ⊆ 𝐹 × Σ𝑛 ⊆ {0, 1}𝑛 × Σ𝑛 where |𝐹 | ≤ 𝑡 for some threshold 𝑡 ≪ 2𝑛, given access
to the following oracle 𝑂[𝐻, 𝐸](𝑥, 𝑣):

𝑂[𝐻, 𝐸](𝑥, 𝑣) = { 1 if 𝑣 ∈ 𝐶, 𝐻(𝑣) = 𝑥, and (𝑥, 𝑣) ∈ 𝐸,
0 otherwise.

This problem is naturally in QMA: the prover can give as proof |adv𝐻⟩ which depends only on 𝐻 . Given
|adv𝐻⟩, the verifier can sample a random 𝑥 ∈ {0, 1}𝑛 and should be able to produce with high probability 𝑣 ∈ 𝐶
such that 𝐻(𝑣) = 𝑥. The oracle 𝑂 therefore allows the verifier to check if 𝑥 ∈ 𝐸 for any 𝑥, making the set
estimation problem trivial. In fact, the QMA verifier need not be concerned about malicious proofs, since a NO
instance of 𝑂 always outputs 0 whenever 𝑥 (which is sampled solely by the verifier) is not in 𝐹 .

We note that our problem differs from the oracle problems defined in [LLPY23, BDK24], which take 𝐸 =
𝐹 × Σ𝑛 for some small set 𝐹 . This modification, while not impacting our QMA algorithm, will be crucial in
establishing a QCMA lower bound.

3

An Entropic Viewpoint. To rule out QCMA proof systems, we first observe that the major difference between
quantum and classical proofs lies in their clonability. In particular, an (oracle) algorithm which uses a classical
witness can always be re-run with the same witness, even if it makes measurements. This simple and seemingly
obvious fact, first formally identified in [Zha24], was utilized to great effect by [BHNZ25] to give their classical
oracle separation, and we will take advantage of it as well.

To this end, suppose therewas some𝑄-queryQCMA verifier 𝑉 which succeeded in the set estimation problem.
We observe that this means that 𝑉 can always distinguish between 𝑂[𝐻, {0, 1}𝑛 × Σ𝑛] and 𝑂[𝐻, 𝐸] whenever
𝐸 is small. But these oracles differ only at inputs (𝑥, 𝑣) where 𝑣 ∈ 𝐶, 𝐻(𝑣) = 𝑥, and (𝑥, 𝑣) ∉ 𝐸! Thus, by the
hybrid lemma [BBBV97], if we measure a random query that 𝑉 makes to 𝑂[𝐻, 𝐸], we should expect to get a
new pair (𝑥, 𝑣) ∉ 𝐸 such that 𝑣 ∈ 𝐶 and 𝐻(𝑣) = 𝑥 with good probability provided 𝐸 is small.2 This gives
rise to a natural algorithm for guessing the hash values of codewords: starting with 𝐸 = ∅, simulate a run of 𝑉
with 𝑂[𝐻, 𝐸] and measure a random query before adding the measurement outcome to 𝐸; rinse and repeat. By
our previous argument, conditioned on having a good witness, each iteration of this algorithm should correctly
produce a new codeword and hash with non-negligible probability. We can therefore turn 𝑉 into a guesser with
non-uniform advice which correctly produces many distinct codewords and their hash values without making any
oracle queries. After guessing the classical 𝑤-bit witness, this gives rise to an unconditional no-query algorithm
which guesses the hash values of ℓ codewords in 𝐶 for all ℓ ≤ 𝑡 with probability

2−𝑤 ⋅ (Ω(𝑄−2))
ℓ

= 2−poly(𝑛) ⋅ (1
poly(𝑛))

ℓ
.

We now argue that this is in fact impossible. Observing that 𝐻 is independently random at each coordinate
𝑖 and symbol 𝑥 ∈ Σ, we can upper bound the success probability of any sampler which produces ℓ points by
(1

2)𝑠(ℓ), where 𝑠(ℓ) is the minimum number of symbols that appear among ℓ distinct codewords in 𝐶. Taking
ℓ = 𝑡 = 𝜔(poly(𝑛)), if we can argue that 𝑠(ℓ) = 𝜔(log𝑛 ⋅ ℓ), then we see that

2−poly(𝑛) ⋅ (1
poly(𝑛))

ℓ
= (1

poly(𝑛))
ℓ

≫ (1
2𝜔(log𝑛))

ℓ
= (1

2)
𝑠(ℓ)

,

which will give us our desired contradiction.

List Recovery and Code Expansion. Howmight we bound 𝑠(ℓ)? For any ℓ distinct codewords 𝑐1, … , 𝑐ℓ ∈ 𝐶,
define the lists 𝑆1, … , 𝑆𝑛 ⊆ Σ such that 𝑆𝑖 consists of all symbols in Σ that appear in the 𝑖’th coordinate of some
codeword 𝑐𝑗 for 𝑗 ∈ [ℓ]. Clearly, 𝑠(ℓ) = min𝑐1,…,𝑐ℓ

∑𝑛
𝑖=1 |𝑆𝑖|, so there must be lists 𝑆∗

1, … , 𝑆∗
𝑛 such that

|𝐶 ∩ (𝑆∗
1 × … × 𝑆∗

𝑛)| ≥ ℓ and
𝑛

∑
𝑖=1

|𝑆∗
𝑖 | = 𝑠(ℓ) .

We now see that the question of how small 𝑠(ℓ) can be is precisely characterized by the list-recoverability of 𝐶.
In particular, if we know that 𝐶 is (𝐿, 𝑂(𝐿))-list-recoverable for 𝐿 ≲ ℓ, then this would mean that 𝑠(ℓ)

𝑛 =
1
𝑛 ∑𝑛

𝑖=1 |𝑆∗
𝑖 | = Ω(ℓ) as desired!

Note that this is a pretty strong condition; it necessitates the use of codes that have near-optimal list recovery,
a property that in particular is not satisfied by the FRS codes used by [YZ24] (see Subsection §3.3 for further
discussion). Fortunately, there is a fix: the setting of zero-error list recovery is closely linked to the notion of
unbalanced expanders, and the recent work of [KTS22] shows that multiplicity codes exhibit precisely the sort
of list recovery that we need. Moreover, the fact that multiplicity codes are 𝔽𝑞-linear and that their duals have
relatively good distance [RZVW24] should guarantee the success of our QMA algorithm. We note that although
our dual code happens to admit efficient unique decoding, our separation only needs 𝐶⟂ to be combinatorially
uniquely decodable, since we can always provide an (inefficient) decoding oracle.

2Critically, if we have already successfully guessed some collection 𝐸 of code words and hash values, we can always perfectly simulate
𝑂[𝐻, 𝐸]. The same is not true for the oracles of [LLPY23, BDK24], for which even “small” sets correspond to exponentially many codewords.

4

A Final Complication. It seems that this rather simple argument completes our separation; after all, by switch-
ing to using multiplicity codes (rather than folded Reed-Solomon codes as in [YZ24, LLPY23, BDK24]), we
have been able to rule out all possible QCMA algorithms. Sadly, we have to deal with one final and rather subtle
issue, which has to do with the parameters of the multiplicity codes: in the process of obtaining excellent list
recovery/expansion from our multiplicity codes, we are forced to make the relative rate of our (primary) code
sub-constant, which means our dual code now has sub-constant relative distance! Recalling that our error distri-
bution should concentrate on vectors with Hamming weight roughly 𝑛/2, we observe that this level of noise is
now likely intolerable as there may not even exist a unique decodingmost of the time under this error distribution.

Our solution is relatively simple, and it uses the generous amount of flexibility that the [Reg09, YZ24] algo-
rithm affords us. Instead of using a completely random function 𝐻 , we will instead make our function biased in
favor of 0 (reminiscent of a recent strategy employed by [GGJL25]). That is, for each element 𝜎 ∈ Σ, 𝐻(𝑖, 𝜎)
will take on the value 0 with probability 𝑝 ≫ 1

2 . Thus, for 𝑥 = 0𝑛, we can expect the error vectors in QFT |𝜙1⟩
to have Hamming weight ≈ 𝑛(1 − 𝑝), drastically reducing the amount of noise that we are required to decode
from with respect to 𝐶⟂.

This change does not come for free, however: unlike in [GGJL25], where the goal was to invert only 𝑥 = 0𝑛,
we need to be able to invert many 𝑥’s, including those with large Hamming weight. By biasing 𝐻 towards 0, on
inputs like 𝑥 = 1𝑛, we create an error distribution which has expected Hamming weight ≈ 𝑛𝑝 ≫ 𝑛/2, thereby
worsening our ability to invert!

Our final idea is to observe that since our algorithm can only invert low Hamming-weight vectors 𝑥 rather
than all vectors in {0, 1}𝑛, we can simply modify the problem to enforce this condition. Instead of trying to invert all
𝑥 ∈ {0, 1}𝑛, we can focus on inverting vectors of the form 𝑥‖0𝑛−𝑛𝑐 , where 𝑥 ∈ {0, 1}𝑛𝑐 and 0 < 𝑐 ≪ 1. That is,
we will now try to differentiate 𝐸 = {0, 1}𝑛𝑐 × 0𝑛−𝑛𝑐 × Σ𝑛 from 𝐸 ⊆ 𝐹 × 0𝑛−𝑛𝑐 × Σ𝑛 where |𝐹 | ≤ 𝑡 ≪ 2𝑛𝑐 .
Since 𝑥‖0𝑛−𝑛𝑐 has Hamming weight at most 𝑛𝑐, the corresponding error distribution for ∣𝜙1(𝑥‖0𝑛−𝑛𝑐)⟩ will be
concentrated on vectors with Hamming weight at most 𝑛𝑐 +(𝑛−𝑛𝑐)(1−𝑝) ≈ 𝑛(1−𝑝), guaranteeing the success
of our QMA algorithm provided our dual code has distance at least 𝑂(𝑛(1 − 𝑝)) and 𝑝 ≲ 1 − 1/𝑛1−𝑐.

A General Recipe for a Classical Oracle Separation. Before describing the advice separation, we summarize
all of the steps we have taken so far to provide a general recipe for getting a QMA versus QCMA oracle separation.
We start with an infinite family of codes {𝐶𝜆}𝜆∈ℕ over a large alphabet Σ (so that there are many solutions to the
code intersection problem) such that:

1. 𝐶⟂
𝜆 can be efficiently decoded up to Ω(𝜆1+𝑐) errors for any constant 𝑐,

2. Codewords of 𝐶𝜆 consist of 𝑛 = poly(𝜆) many symbols from Σ,
3. 𝐶𝜆 has near optimal list recovery for sufficiently large 𝜆.

Then for every 𝜆, we can sample hash functions 𝐻1, … , 𝐻𝑛 to be biased so that roughly a 𝜆/𝑛(𝜆)-fraction of
symbols are pre-images of 1. We will ask for pre-images of 𝑥‖0𝑛−𝜆 for 𝑥 ∈ {0, 1}𝜆. The bias of the 𝐻𝑖, together
with the fact that we ask for a hash that has at most 𝜆 many 1’s, ensures that the dual decoding problem encounters
an error with 𝑂(𝜆) Hamming weight with high probability, which falls under our dual decoding distance of
Ω(𝜆1+𝑐). Thus, the Yamakawa-Zhandry algorithm works and the problem stays in QMA. At the same time, a
QCMA verifier will imply a sampler that outputs 𝑣 codewords of the code with probability poly(𝜆)−𝑣, and list
recovery will enforce that this corresponds to Ω(𝑣 ⋅ 𝑛) symbols. The bias of the 𝐻𝑖 will mean that the probability
of guessing all symbols correctly will be (1 − 𝜆/𝑛)Ω(𝑣⋅𝑛) ≈ exp(−𝜆𝑣) ≪ poly(𝜆)−𝑣, giving us a contradiction.

By instantiating this recipe with carefully chosenmultiplicity codes, we arrive at our classical oracle separation.

Moving to the Advice Setting: BQP/qpoly vs. BQP/poly. Unfortunately, the set approximation problem
is easy with trusted advice: a single classical bit suffices to indicate whether the set in question is large or small.
Here, the relative simplicity of our separation (which uses almost entirely classical ideas) and our use of a TFNP
problem allows us to extend our separation to the question of BQP/qpoly and BQP/poly. In contrast, it is not
at all obvious (to us) how to construct even a candidate separating language based on the (decisional) spectral
Forrelation problem of [BHNZ25].

In particular, the code intersection problem gives rise to the following BQP/qpoly language: begin by sam-
pling some random binary language ℒ ⊆ {0, 1}𝑛. On input 𝑥 ∈ {0, 1}𝑛, our oracle 𝑂 will simply return whether

5

𝑥 ∈ ℒ or 𝑥 ∉ ℒ provided it is given a valid codeword 𝑣 which hashes to 𝑥. On the one hand, our original QMA
algorithm still works as a BQP/qpoly machine, since |adv𝐻⟩ is agnostic of 𝑥 and allows us to produce 𝑣 for all
𝑥. On the other hand, as we have intuitively argued earlier, even trusted classical advice should not help a BQP
machine to produce many valid codewords, so for most 𝑥, any BQP machine with classical advice will not be able
to receive the output of the oracle indicating whether 𝑥 ∈ ℒ. Since the advice is bounded, it cannot itself describe
many elements of ℒ, so the BQP machine will fail to decide whether 𝑥 ∈ ℒ for most 𝑥. The problem of guessing
the value of a random function 𝐻 given bounded-size advice and without querying 𝐻 can be made precise by
appealing to results on Yao’s box problem due to Chung, Guo, Liu and Qian [CGLQ20]. We show that rela-
tively straightforward modifications of the argument used by [LLPY23] for ruling out classical-access BQP/poly
algorithms extend to ruling out generic BQP/poly algorithms as well, completing the advice separation.

Some Concluding Remarks. First, as in [BHNZ25], it is not hard to see that our oracles also separate the
clonable variants of QMA and BQP/qpoly from their regular counterparts.

Secondly, we emphasize that while the code intersection problem has previously been considered in the con-
text of proof and advice separations [Liu23, LLPY23, BDK24], all existing works employed FRS codes, which
(as mentioned earlier) do not enjoy strong enough list-recovery properties. In particular, running our argument
with FRS codes gives an upper bound on the sampling success probability which is too weak for any (even weak)
separation! On the other hand, multiplicity codes do not appear to have strong enough decoding properties to
handle the large amounts of noise that would be incurred by perfectly random functions 𝐻 , which necessitates
our use of biased oracles and restriction to low Hamming-weight vectors (an idea which did not appear in earlier,
more limited, separations).

Finally, and unrelated to the main theme of this paper, in the process of modifying the Yamakawa-Zhandry
algorithm for our separation, we observe that biasing the random oracle 𝐻 in question also has the benefit of
making the quantum algorithm in question much more efficient. As an example, if we tweak 𝐻 to be even 2/3-
biased, this already decreases the noise level sufficiently that we can rely on (significantly faster) unique decoders
rather than list decoders, which currently appears to be the major bottleneck in runtime.

3 Discussion and Open Questions
3.1 Structured versus randomness in classical oracle separations
As stated in the introduction, one major barrier in lifting the oracle separation of [BHNZ25] to the advice setting
is that the oracle is most naturally associated with a hard quantum search problem, instead of a classical one.
In their classical oracle separation, the authors identify a way of sampling instances of the spectral Forrelation
problem such that the pair of functions that seems completely random, except that they are related by the Fourier
transform (and, in the case of [BHNZ25], one of the two oracles being sparse). In some informal sense, our oracle
separation enables an efficient quantum verifier to extract more information (namely, the solution to a hard search
problem) from its witness, but doing so seems to require additional structure in the oracle.

A natural question to ask is how much information can be encoded into a quantum state before it becomes
clonable, and whether our ideas are useful in encoding information into other kinds of quantum states. The
cryptographic analogy of a separation between QMA and QCMA (or, really UnclonableQMA) is a primitive called
quantum money [Aar09]. These are states that can not be cloned, but can be verified, similar to witnesses for
QMA problems that are not in QCMA. An extremal form of this primitive (and this idea of encoding information
in a quantum state) is known as “copy-protected software”, wherein an efficient quantum party can extract the
input output behavior of an entire classical function from a quantum state. Currently, there are several candidates
for quantum money constructions in the plain model [FGH+12, BNZ25, Zha25], but less is known about copy-
protected software. We hope that ideas from our separation might be useful in finding such constructions. To
make progress towards cryptographic instantiations, one concrete direction to explore is a precise characterization
of which witnesses cause our QMA verifier to accept with high probability.

3.2 QMA-completeness of a decoding problem
One interesting difference between our oracle separation and the oracle separation of [BHNZ25] is that their
oracle separation can be seen as an obfuscation of aQMA-complete problem. To elaborate further, just as problems

6

involving random sparse functions might model the difficulty of constructing a SAT solver which ignores the
structure of the SAT instance it receives, the spectral Forrelation problem models an algorithm for solving a two-
basis local Hamiltonian problem that does not look at the structure of the two local Hamiltonians it receives.
Note that despite the connection to a QMA-complete problem, this property is not actually needed to achieve a
separation between QMA and QCMA, as highlighted in the actual oracle separation of [BHNZ25]. In particular,
the “YES” and “NO” instances can be taken to have sets 𝑆 of a fixed size ℓ or ≤ ℓ/10. Such distributions of
oracles can be easily distinguished by an AM protocol [GS86], but it appears unlikely that solving the actual
spectral Forrelation problem can be done in AM, because another way to sample “NO” instances of the spectral
Forrelation problem would be to re-sample sets 𝑆′ independent of 𝑈 . Distinguishing such pairs from Forrelated
pairs (𝑆, 𝑈) seems to truly require a QMA verifier.

In contrast, the problem we construct really is in AM, as it directly involves distinguishing between large and
small sets, and any reasonable variant of the code intersection problem would likely remain in the polynomial
hierarchy. Of course, an oracle separation between QCMA and AM already exists (and in fact, comes from early
work on separating QMA from QCMA [FK15]!), but we find it intriguing that our separation relies on a problem
which appears to be of only intermediate difficulty and does not need the “full” power of QMA in some sense. In
fact, as our problem appears on its face to be completely unrelated to quantum algorithms, we believe it remains
an extremely interesting question to find a QMA-complete variant of the code intersection problem.

3.3 Simplifications to the separation
Naturally, one may ask if our separations can be made even simpler; here, we outline a few directions to consider.

On Round-Reduction Arguments. The work of [BDK24] can be thought of as a round-reduction argument
as follows: in the style of [AK07], we will, given any QCMA proof system, fix some classical witness which
corresponds to the largest set of NO instances. The polynomial bound on the size of the proof means that
the collection of functions 𝐻 which are consistent with this witness remains substantial, and in particular the
distribution over all consistent 𝐻 must have large min-entropy. We conclude that the set of symbols 𝑆 which
have low entropy conditioned on this classical proof is also bounded.

We now look at the verifier’s inputs to the oracle in the first round of queries. Observe that any inputs
corresponding to non-codewords, as well as ones which have low overlap with 𝑆 will be correct with negligible
probability. By the hybrid lemma, it suffices to restrict our attention to codewords which have high overlap with
𝑆 (so called “dangerous” inputs) – but this set is bounded precisely by the list recovery of our code! At this stage,
we can simply give away the values of 𝐻 on dangerous inputs for free, allowing the verifier to simulate its first
round of queries. As a consequence, we can peel off a round of queries at the cost of requiring more advice.
Repeating this “peeling and bloating” routine with FRS codes results in a 𝑜(log𝑛/ log log𝑛)-round bound.

Sadly, this approach seems fairly doomed if we stick to the Yamakawa-Zhandry problem: even with nearly
optimal list recovery, our advice will certainly increase by some constant factor with each round, so we would
remain stuck at an 𝑜(𝑛)-round bound. One could imagine a better argument that uses some special property of
any collection of recovered codewords that ensures these lists do not grow by too much iteratively, but this seems
quite difficult (and would definitely be much more complicated!).

Other Codes? One might wonder why we need multiplicity codes here – after all, there are other codes which
give rise to unbalanced expanders besides those of [KTS22], namely the constructions of [GUV09], but examining
these constructions in closer detail presents some unexpected issues:

1. [GUV09] construct two unbalanced expanders with near-optimal expansion, one based on Parvaresh-
Vardy codes and the other based on a subcode of FRS codes. Alas, neither of these instantiations are linear,
which means our quantum proof/advice-based algorithm will fail.

2. [GUV09] also considers unbalanced expanders based on plain FRS codes, which are linear in some sense,
but such expanders have expansion which is too weak to show classical hardness.

On the Necessity of Near-Optimal List Recovery. Our proof relies on fairly strong expansion/list recovery
properties of the underlying code 𝐶. It is not hard to see that we can tolerate slightly suboptimal expansion, i.e.

7

if 𝑠(ℓ) = Ω(ℓ/poly(𝑛)). Extending our sampling-based argument to work for polynomial or super-polynomial
expansion, i.e. 𝑠(ℓ) = ℓ𝑂(1), would open the door to a much larger class of usable codes.

What About Random Linear Codes? It is well known that random linear codes (RLCs) and their duals have
good distance with high probability, and they are by definition linear, which means our quantum proof/advice-
based algorithm will succeed. However, to show classical hardness, we need near-optimal list recovery, which
remains a challenging open problem to show for RLCs [LS25]. We believe that a proof of such a result for RLCs
is the clearest way to conceptually simplify our separation.

4 Preliminaries
4.1 Notation
We say that a function 𝛿 ∶ ℕ ↦ [0, 1] is inverse polynomial if there exists a polynomial 𝑝 such that 𝛿(𝑛) ≤ 1/𝑝(𝑛)
for sufficiently large 𝑛. A function 𝜖 ∶ ℕ ↦ [0, 1] is negligible if for every polynomial 𝑝, for all sufficiently large
𝑛, 𝜖(𝑛) < 1/𝑝(𝑛).

We use the notation id to denote the identity operator. We will occasionally concatenate superscripts when
it is clear from context, so QFT−1,⊗𝑛 denotes (QFT−1)⊗𝑛. We will also sometimes abbreviate the tensor product
state |0⟩⊗𝑛 as |0𝑛⟩.

A register R is a named finite-dimensional complex Hilbert space. If A, B, C are registers, for example, then
the concatenation ABC denotes the tensor product of the associated Hilbert spaces. For a linear transformation 𝐿
and register R, we write 𝐿R to indicate that 𝐿 acts on R, and similarly we write 𝜎𝑅 to indicate that a state 𝜎 is in
the register R.

4.2 Probability and Complexity Theory
Definition 4.1 (Modified from [BHNZ25]). We use the phrase “an oracle” to refer to a function 𝒪 ∶ {0, 1}∗ → {0, 1}.
A quantum query algorithm is a quantum circuit that interacts with an oracle 𝒪 ∶ {0, 1}∗ → {0, 1} via a query gate
|𝑥, 𝑏⟩ → |𝑥, 𝑏 ⊕ 𝒪(𝑥)⟩, which acts on an |𝑥| + 1-qubit query register for various 𝑥. The algorithm is described by an
alternating sequence of unitaries (drawn from any fixed gate set) and query gates. After all gates are applied, a designated
qubit is measured in the standard basis to determine acceptance. The circuit has ancilla qubits which are initialized to |0⟩
and all intermediate unitaries may act on an arbitrary (but finite) number of qubits.

A quantum query algorithm may also receive an auxiliary witness or advice as input. A quantum witness/advice state
is a state |𝜓⟩ on some (finite) number of qubits, while a classical witness/advice string is a (finite) bitstring 𝑤, treated as a
computational basis state. The algorithm’s acceptance probability may depend on both the oracle and the witness.
Definition 4.2 ([BHNZ25]). We denote a family of quantum oracle circuits/algorithms by {𝒜𝜆}𝜆∈ℕ, where the index
𝜆 corresponds to the length of the explicit input to the computational problem. {𝒜𝜆}𝜆∈ℕ is P-uniform if there exists a
deterministic polynomial-time Turing machine 𝑀 that, on input 1𝜆, outputs a full classical description of the circuit 𝒜𝜆.
The runtime of 𝑀 implies that 𝒜𝜆 has at most poly(𝜆) gates (oracle or elementary), queries 𝒪 at lengths of at most
poly(𝜆), and receives witnesses/advice of length at most poly(𝜆).

We can now define the complexity classes that we will consider in this work.

Definition 4.3 (Oracle QCMA). A promise language ℒ𝒪 = (ℒyes, ℒno)𝒪 ⊆ {0, 1}∗ is in QCMA𝒪 if there exists a
P-uniform family of quantum oracle circuits 𝒜𝜆 with 𝒜𝜆 accepting a witness of length 𝑡(𝜆), such that for every input 𝑥 of
length 𝜆 = |𝑥|,

• 𝑥 ∈ ℒyes ⟹ ∃𝑤 ∈ {0, 1}𝑡(𝜆) s.t. Pr[𝒜𝒪
𝜆(𝑥, 𝑤) = 1] ≥ 2

3 ,

• 𝑥 ∈ ℒno ⟹ ∀𝑤 ∈ {0, 1}𝑡(𝜆),Pr[𝒜𝒪
𝜆(𝑥, 𝑤) = 1] ≤ 1

3 .

Definition 4.4 (Oracle QMA). A promise language ℒ𝒪 = (ℒyes, ℒno)𝒪 ⊆ {0, 1}∗ is in QMA𝒪 if there exists a P-
uniform family of quantum oracle circuits 𝒜𝜆 with 𝒜𝜆 accepting a witness of length 𝑡(𝜆), such that for every input 𝑥 of
length 𝜆 = |𝑥|,

8

• 𝑥 ∈ ℒyes ⟹ ∃ |𝜓⟩ ∈ (ℂ2)⊗𝑡(𝜆) s.t. Pr[𝒜𝒪
𝜆(𝑥, |𝜓⟩) = 1] ≥ 2

3 ,

• 𝑥 ∈ ℒno ⟹ ∀ |𝜓⟩ ∈ (ℂ2)⊗𝑡(𝜆),Pr[𝒜𝒪
𝜆(𝑥, |𝜓⟩) = 1] ≤ 1

3 .

Definition 4.5 (Oracle BQP/poly). A promise language ℒ𝒪 = (ℒyes, ℒno)𝒪 ⊆ {0, 1}∗ is in BQP𝒪/poly if there
exists a P-uniform family of quantum oracle circuits 𝒜𝜆 with 𝒜𝜆 accepting advice of length 𝑡(𝜆) and an advice family
{adv𝜆}𝜆≥1 where |adv𝜆| = 𝑡(𝜆), such that for every input 𝑥 of length 𝜆 = |𝑥|,

• 𝑥 ∈ ℒyes ⟹ Pr[𝒜𝒪
𝜆(𝑥, adv𝜆) = 1] ≥ 2

3 ,

• 𝑥 ∈ ℒno ⟹ Pr[𝒜𝒪
𝜆(𝑥, adv𝜆) = 1] ≤ 1

3 .

If 𝑡(𝜆) = 0 then we say ℒ𝒪 ∈ BQP𝒪.

Definition 4.6 (Oracle BQP/qpoly). A promise language ℒ𝒪 = (ℒyes, ℒno)𝒪 ⊆ {0, 1}∗ is in BQP𝒪/qpoly if there
exists a P-uniform family of quantum oracle circuits 𝒜𝜆 with 𝒜𝜆 accepting advice of length 𝑡(𝜆) and an advice family
{|adv𝜆⟩}𝜆≥1 where |adv𝜆⟩ ∈ (ℂ2)⊗𝑡(𝜆), such that for every input 𝑥 of length 𝜆 = |𝑥|,

• 𝑥 ∈ ℒyes ⟹ Pr[𝒜𝒪
𝜆(𝑥, |adv𝜆⟩) = 1] ≥ 2

3 ,

• 𝑥 ∈ ℒno ⟹ Pr[𝒜𝒪
𝜆(𝑥, |adv𝜆⟩) = 1] ≤ 1

3 .
Given a quantum query algorithm, we can define the query mass of the algorithm on a particular set of inputs.

Definition 4.7 (Query mass). For an oracle circuit 𝐴 making 𝑄 quantum queries to an oracle 𝒪 with input domain
𝐷, let ∑𝑥 𝛼(𝑖)

𝑥 |𝑥⟩ |𝜓𝑥⟩ be the state of the algorithm immediately before their 𝑖’th query to 𝒪, where the first register is the
input register to the oracle, and let 𝑀𝑥(𝑖) = |𝛼(𝑖)

𝑥 |2 be the query mass of 𝑥 in the 𝑖’th query. For a subset 𝑉 ⊆ [𝑄] × 𝐷,
let 𝑀𝑉 = ∑(𝑖,𝑥)∈𝑉 𝑀𝑥(𝑖) be the total query mass of points in 𝑉 .

The following theorem was proven in [BBBV97], using the hybrid method.

Theorem 4.8 (Hybrid method [BBBV97]). Let 𝐴 be an oracle circuit which makes 𝑄 queries to an oracle 𝒪 with input
domain 𝐷. If we modify 𝒪 into an oracle 𝒪′ which differs only on a set of time-input pairs 𝑉 ⊆ [𝑄] × 𝐷, then

|Pr[𝐴𝒪(⋅) = 1] − Pr[𝐴𝒪′(⋅) = 1]| ≤ 4√𝑄𝑀𝑉 .

Finally, we will also use some basic probability lemmas.

Lemma 4.9 (Chernoff Bound). Let 𝑋1, … , 𝑋𝑛 be independent random variables taking values in {0, 1}, 𝑋 ∶=
∑𝑛

𝑖=1 𝑋𝑖, and 𝜇 ∶= 𝔼[𝑋]. For any 𝛿 ≥ 0, it holds that Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−𝛿2𝜇/(2+𝛿).

Lemma 4.10 (Borel–Cantelli, [Bor09, Can17]). Let {𝑋𝜆}𝜆∈ℕ be a sequence of (not necessarily independent) random
variables with values in {0, 1}. If ∑∞

𝜆=1 𝔼[𝑋𝜆] < ∞, then Pr [∑∞
𝜆=1 𝑋𝜆 = ∞] = 0.

4.3 Coding Theory
For a prime power 𝑞, we denote by 𝔽𝑞 the finite field of order 𝑞 and denote by (𝔽𝑞)<𝑘[𝑋] the set of univariate
polynomials over 𝔽𝑞 with degree less than 𝑘.
Definition 4.11. A code of length 𝑛 ∈ ℕ over an alphabet Σ is a subset 𝐶 ⊆ Σ𝑛. 𝐶 ⊆ Σ𝑛 is said to be 𝔽𝑞-linear if its
alphabet Σ = 𝔽𝑠

𝑞 for some field 𝔽𝑞 and a positive integer 𝑠 ≥ 1 and 𝐶 is an 𝔽𝑞-linear subspace of Σ𝑛. Equivalently, this
means that for any two codewords 𝑥, 𝑦 ∈ 𝐶 and scalar 𝛼 ∈ 𝔽𝑞 , both 𝑥 + 𝑦 and 𝛼 ⋅ 𝑥 are in 𝐶 .

For an 𝔽𝑞-linear code 𝐶 , the dual code of 𝐶 is the code 𝐶⟂ ⊆ (𝔽𝑠
𝑞)𝑛 containing all strings 𝑐′ ∈ (𝔽𝑠

𝑞)𝑛 which satisfy
𝑛

∑
𝑖=1

𝑠
∑
𝑗=1

(𝑐′
𝑖)𝑗 ⋅ (𝑐𝑖)𝑗 = 0

for all 𝑐 ∈ 𝐶 . Observe that 𝐶⟂ is always 𝔽𝑞-linear, and that |𝐶| ⋅ |𝐶⟂| = |Σ|𝑛 if and only if 𝐶 is 𝔽𝑞-linear.

9

For any vector 𝑥 ∈ Σ𝑛, define hw(𝑥) ∈ [0, 𝑛] as the Hamming weight of 𝑥, i.e. the number of nonzero
elements in 𝑥. We say that 𝐶 ⊆ Σ𝑛 has distance 𝑑 if for any two distinct codewords 𝑐1, 𝑐2 ∈ 𝐶, hw(𝑐1 − 𝑐2) ≥ 𝑑.
Definition 4.12 (Formal and Hasse derivatives). Let 𝑓(𝑋) = ∑𝑛

𝑗=0 𝑎𝑗𝑋𝑗 ∈ 𝔽𝑞[𝑋] be a univariate polynomial over
𝔽𝑞 . We define the 𝑖’th formal and Hasse derivatives of 𝑓(𝑋) as the linear operators which take 𝑓(𝑋) to the polynomials

𝑓 [𝑖](𝑋) =
𝑛

∑
𝑗=𝑖

𝑗!
(𝑗 − 𝑖)!𝑎𝑗𝑋𝑗−𝑖 and 𝑓 (𝑖)(𝑋) =

𝑛
∑
𝑗=𝑖

(𝑗
𝑖)𝑎𝑗𝑋𝑗−𝑖 ,

respectively. Note that 𝑓 [𝑖](𝑋) = 𝑖!𝑓 (𝑖)(𝑋) for all 𝑖 and 𝑓 .
Definition 4.13 (Univariate multiplicity codes, from [RT97, Nie01, KSY14]). Let 𝔽𝑞 be a finite field and let
𝑠 be a positive integer. Let 𝛼1, … , 𝛼𝑛 be distinct points in 𝔽𝑞 , and let 𝑘 < 𝑠𝑛 be a positive integer. The univariate
multiplicity code Mult𝑠,𝔽𝑞

(𝛼1, … , 𝛼𝑛; 𝑘) is the code over the alphabet Σ = 𝔽𝑠
𝑞 of length 𝑛 which associates each polynomial

𝑓(𝑋) ∈ (𝔽𝑞)<𝑘[𝑋] to the codeword 𝑐 ∈ Σ𝑛 such that for 𝑖 ∈ [𝑛],

𝑐𝑖 = (𝑓 (0)(𝛼𝑖), 𝑓 (1)(𝛼𝑖), … , 𝑓 (𝑠−1)(𝛼𝑖)),

where 𝑓 (𝑗) is the 𝑗’th Hasse derivative of 𝑓 . Let Mult𝑠,𝔽𝑞,𝑘 ∶= Mult𝑠,𝔽𝑞
(1, … , 𝑞; 𝑘); note that Mult𝑠,𝔽𝑞,𝑘 is 𝔽𝑞-linear.

Definition 4.14 (List recoverable). A code 𝐶 ⊆ Σ𝑛 is (ℓ, 𝐿)-list recoverable if for all 𝑆1, … , 𝑆𝑛 ⊆ Σ such that
1
𝑛 ∑𝑛

𝑖=1 |𝑆𝑖| ≤ ℓ,
|{(𝑥1, … , 𝑥𝑛) ∈ 𝐶 ∶ ∀𝑖 ∈ [𝑛], 𝑥𝑖 ∈ 𝑆𝑖}| ≤ 𝐿.

Definition 4.15 (Expanders [GUV09]). A bipartite graph with 𝑁 left-vertices, 𝑀 right-vertices, and left-degree 𝐷 is
specified by a function Γ ∶ [𝑁] × [𝐷] → [𝑀], where Γ(𝑥, 𝑦) denotes the 𝑦’th neighbor of 𝑥. For a set 𝑋 ⊆ [𝑁], we write
Γ(𝑋) to denote its set of neighbors ⋃𝑥∈𝑋,𝑦∈[𝐷] Γ(𝑥, 𝑦). For a set 𝑇 ⊆ [𝑀], we write LISTΓ(𝑇) = {𝑥 ∶ Γ(𝑥) ⊆ 𝑇 }.

We say that Γ is a (𝐾, 𝐴)-expander if for every set 𝑋 ⊆ [𝑁] of size at most 𝐾 , |Γ(𝑋)| ≥ 𝐴 ⋅ |𝑋|. Note that if Γ
is a (𝐾, 𝐴)-expander then for all 𝐵 ≤ 𝐾 and all sets 𝑇 such that |𝑇 | < 𝐴𝐵, |LISTΓ(𝑇)| < 𝐵.

Our separation will utilize expanders based on multiplicity codes as constructed in [KTS22].3

Theorem 4.16 ([KTS22]). For every field 𝔽𝑞 , 𝑘, 𝑠 ∈ ℕ such that 15 ≤ 𝑠 + 1 ≤ 𝑘 ≤ char(𝔽𝑞), identify the elements
of 𝔽𝑘

𝑞 with univariate polynomials of degree less than 𝑘. Define the graph Γ ∶ 𝔽𝑘
𝑞 × 𝔽𝑞 → 𝔽𝑠+1

𝑞 by

Γ(𝑓, 𝑦) = (𝑦, 𝑓 [0](𝑦), 𝑓 [1](𝑦), … , 𝑓 [𝑠−1](𝑦)),

where 𝑓 [𝑖] is the 𝑖’th formal derivative of 𝑓 in 𝔽𝑞[𝑋]. For every 𝐾 > 0, Γ is a (𝐾, 𝐴)-expander where

𝐴 = 𝑞 − 𝑘(𝑠 + 1)
2 ⋅ (𝑞𝐾) 1

𝑠+1 .

Corollary 4.17. For each security parameter 𝜆 ∈ ℕ, let 𝑘 = 𝜆3, 𝜆5 < 𝑞 ≤ 2𝜆5 be any prime, and 𝑠 = 𝜆. Identify the
elements of 𝔽𝑘

𝑞 with univariate polynomials of degree less than 𝑘. Define the code 𝐶′
𝜆 ⊆ Σ𝑞 = (𝔽𝑠

𝑞)𝑞 with encoding map

Enc(𝑓) = {(𝑓 [0](𝑦), 𝑓 [1](𝑦), … , 𝑓 [𝑠−1](𝑦))}𝑦∈𝔽𝑞
,

where 𝑓 [𝑖] is the 𝑖’th formal derivative of 𝑓 . Then, for sufficiently large 𝜆, 𝐶′
𝜆 is (ℓ, 2ℓ)-list recoverable if ℓ ≤ 2𝑠 = 2𝜆.

Proof. Set 𝐾 = 2𝑠+1 and fix ℓ ≤ 2𝑠; Theorem 4.16 implies that Γ ∶ 𝔽𝑘
𝑞 × 𝔽𝑞 → 𝔽𝑠+1

𝑞 is a (𝐾, 𝐴)-expander where

𝐴 ≥ 𝑞 − 𝑘(𝑠 + 1)
2 ⋅ (𝑞𝐾) 1

𝑠+1 = 𝑞 − 𝑘(𝑠 + 1)
2 ⋅ (𝑞 ⋅ 2𝑠+1) 1

𝑠+1 > 𝑞/2,

for sufficiently large 𝜆.
3We note that the proof of expansion extends straightforwardly to subgraphs of Γ defined by taking edges corresponding to subsets

𝑆 ⊆ 𝔽𝑞, although it suffices for us to take 𝑆 = 𝔽𝑞.

10

Fix any lists 𝑆1, … , 𝑆𝑞 ⊆ Σ such that 1
𝑞 ∑𝑞

𝑖=1 |𝑆𝑖| ≤ ℓ and consider the set

𝑅 =
𝑞

⋃
𝑖=1

𝑅𝑖, 𝑅𝑖 ∶= {(𝑖, 𝑤0, … , 𝑤𝑠−1) ∶ (𝑤0, … , 𝑤𝑠−1) ∈ 𝑆𝑖}.

Observe that 𝑅 is a set of right vertices of Γ and that |𝑅| = ∑𝑖 |𝑆𝑖| ≤ 𝑞ℓ < 𝐴 ⋅ 2ℓ ≤ 𝐴𝐾. Now consider the
set 𝑋 of all polynomials 𝑓 such that for all 𝑖 ∈ [𝑞], Enc(𝑓)𝑖 ∈ 𝑆𝑖; our goal is to bound |𝑋|. By construction,
𝑋 = LISTΓ(𝑅), so it follows that |𝑋| = |LISTΓ(𝑅)| < 2ℓ.

In our parameter regime, it is straightforward to see that the code𝐶𝜆 = Mult𝑠,𝔽𝑞,𝑘 has the same list-recoverability
as 𝐶′

𝜆, since for fields 𝔽𝑞 where char(𝔽𝑞) > 𝑠, 𝐶𝜆 and 𝐶′
𝜆 are identical up to scalar factors.

Corollary 4.18. For each security parameter 𝜆 ∈ ℕ, let 𝑘 = 𝜆3, 𝜆5 < 𝑞 ≤ 2𝜆5 be any prime, and 𝑠 = 𝜆. Then, for
sufficiently large 𝜆, 𝐶𝜆 = Mult𝑠,𝔽𝑞,𝑘 is (ℓ, 2ℓ)-list recoverable for all ℓ ≤ 2𝜆.

Finally, we will use a result about duals of univariate multiplicity codes which we reprove in Section §A.4

Theorem 4.19 ([RZVW24]). For all parameters 𝑠, 𝑞, and 𝑘 < 𝑠𝑞, (Mult𝑠,𝔽𝑞,𝑘)⟂ has distance at least 𝑘+1
𝑠 .

4.4 Yao’s Box Problem and Non-Uniform Advice
Wewill need the following results on non-uniform advice for our separation betweenBQP/qpoly andBQP/poly.
Theorem 4.20 ([CGLQ20]). Let 𝐺 ∶ [𝑁] → {0, 1} be a random function. Let 𝒜 be an unbounded-time algorithm,
with 𝑆 bits of classical advice 𝑧𝐺. For an index 𝑥 ∈ [𝑁], let 𝐺|𝑥 ∶ 𝑁 → {0, 1} denote the function that results from
removing 𝑥 from 𝐺; in other words, on inputs 𝑥′ ≠ 𝑥, 𝐺(𝑥′) = 𝐺|𝑥(𝑥′) and 𝐺|𝑥(𝑥) = 0. The probability that 𝒜
computes 𝐺(𝑥) while making 𝑄 quantum queries to 𝐺|𝑥 for a random index 𝑥 is at most

Pr
𝐺,𝑥

[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)] ≤ 1
2 + 𝑂 ((𝑆 + log𝑁)𝑄

𝑁)
1/3

.

Lemma 4.21. Let 𝐺 ∶ {0, 1}𝜆 → {0, 1} be a uniformly random function. For an algorithm 𝒜 that makes 𝑄(𝜆) =
poly(𝜆) quantum queries to 𝐺 and a family of 𝑡(𝜆) = poly(𝜆)-bit classical advice {𝑧𝐺}𝐺, suppose that

Pr
𝐺,𝑥←{0,1}𝑛

[𝒜𝐺(𝑧𝐺, 𝑥) = 𝐺(𝑥)] > 3
5 .

Then, for sufficiently large 𝜆, for a 1
4000𝑄2 fraction of 𝑥 ∈ {0, 1}𝜆, measuring a random query of 𝒜𝐺 (for randomly

sampled 𝐺) will produce 𝑥 with probability at least 1
3200𝑄2 .

Proof. The proof closely follows [LLPY23], but considers quantum queries instead of classical ones. The only
way for 𝒜 to distinguish 𝐺 from 𝐺|𝑥 is to have nontrivial query mass at 𝑥. Denote by 𝑀𝐺,𝑥 the total query mass
that 𝑥 is placed by 𝒜 when querying 𝐺. For each 𝐺 and 𝑥 we have that

|Pr[𝒜𝐺(𝑧𝐺, 𝑥) = 𝐺(𝑥)] − Pr[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)]| ≤ 4√𝑄𝑀𝐺,𝑥.

Now we consider the case when we uniform randomly choose 𝑥 ← {0, 1}𝜆, and require 𝒜𝐺|𝑥(𝑧𝐺, 𝑥) to output
𝐺(𝑥). This is exactly Yao’s box problem, so by Theorem 4.20,

Pr
𝐺,𝑥

[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)] ≤ 1
2 + 𝑂 ((𝑡 + 𝜆)𝑄

2𝜆)
1/3

= 1
2 + negl(𝜆)

⟹ Pr
𝐺,𝑥

[𝒜𝐺(𝑧𝐺, 𝑥) = 𝐺(𝑥)] − Pr
𝐺,𝑥

[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)] ≥ 1
10 − negl(𝜆).

4We note that the work we cite ([RZVW24]) was recently retracted, but the particular theoremwe use remains correct. For completeness,
an entirely self-contained proof of this fact is given in the appendix.

11

Thus,

𝔼
𝐺,𝑥

[𝑀𝐺,𝑥] ≥ 𝔼
𝐺,𝑥

[1
16𝑄 (Pr[𝒜𝐺(𝑧𝐺, 𝑥) = 𝐺(𝑥)] − Pr[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)])2]

≥ 1
16𝑄 (𝔼

𝐺,𝑥
[Pr[𝒜𝐺(𝑧𝐺, 𝑥) = 𝐺(𝑥)] − Pr[𝒜𝐺|𝑥(𝑧𝐺, 𝑥) = 𝐺(𝑥)]])

2
≥ 1

1600𝑄 − negl(𝜆),

by Jensen’s inequality. Finally, by a Markov inequality, we see that

Pr
𝑥

[𝔼
𝐺

[𝑀𝐺,𝑥] ≥ 1
3200𝑄] ≥ 1

3200𝑄2 − negl(𝜆).

Thus, for sufficiently large 𝜆, for a 1
3200𝑄2 −negl(𝜆) ≥ 1

4000𝑄2 fraction of 𝑥 ∈ {0, 1}𝜆, measuring a random query
of 𝒜𝐺 (for randomly sampled 𝐺) will produce 𝑥 with probability at least 1

3200𝑄2 .

5 The Generalized Code Intersection Problem
5.1 Definitions and Basic Facts
We begin by recalling the definitions and basic results from [YZ24]. Much of this section will be taken directly
from [YZ24], with only minor modifications. We first define the code intersection relation, which is essentially
the problem of finding codewords over 𝑛 symbols whose symbols have a particular hash value.

Definition 5.1 (Code intersection relation, adapted from [YZ24, LLPY23, BDK24]). For a function 𝐻 ∶ [𝑛]×Σ →
{0, 1} and a code 𝐶 ⊆ Σ𝑛, define the code intersection relation 𝑅𝐶,𝐻 ⊆ {0, 1}𝑛 × Σ𝑛 by

𝑅𝐶,𝐻 = {(x, v) = (𝑥1, … , 𝑥𝑛, 𝑣1, … , 𝑣𝑛) ∶ ((𝑣1, … , 𝑣𝑛) ∈ 𝐶) ∧ (∀𝑖 ∈ [𝑛], 𝐻(𝑖, 𝑣𝑖) = 𝑥𝑖)}.

Remark 5.2. We can view 𝐻 ∶ [𝑛] × Σ → {0, 1} as a collection of 𝑛 many functions, 𝐻(𝑖, ⋅) ∶ Σ → {0, 1}, and we will
at times use the notation 𝐻𝑖 ∶ Σ → {0, 1} when referring to the function corresponding to the 𝑖’th output coordinate of 𝐻 .
Definition 5.3 (Trace over a finite field [YZ24]). For any prime power 𝑞 = 𝑟𝑚 where 𝑟 is prime, we define the trace
function Tr(𝑥) ∶= ∑𝑚−1

𝑖=0 𝑥𝑟𝑖 which maps elements of 𝔽𝑞 to 𝔽𝑟 . The trace function is 𝔽𝑟-linear: for all 𝑎, 𝑏 ∈ 𝔽𝑟 and
𝑥, 𝑦 ∈ 𝔽𝑞 , Tr(𝑎𝑥 + 𝑏𝑦) = 𝑎Tr(𝑥) + 𝑏Tr(𝑦). In addition, for any 𝑥 ∈ 𝔽𝑛

𝑞 , ∑𝑦∈𝔽𝑛𝑞
𝜔Tr(𝑥⋅𝑦)

𝑟 = 0, where 𝜔𝑟 ∶= 𝑒2𝜋𝑖/𝑟 .

Definition 5.4 (Quantum Fourier transform over a finite field [YZ24]). For a finite field 𝔽𝑞 where 𝑞 = 𝑟𝑚 and 𝑟
is prime, the quantum Fourier transform over 𝔽𝑞 is the unitary denoted by QFT𝑞 such that for any 𝑥 ∈ 𝔽𝑞 ,

QFT𝑞 |𝑥⟩ = 1√𝑞 ∑
𝑧∈𝔽𝑞

𝜔Tr(𝑥⋅𝑧)
𝑟 |𝑧⟩ .

The QFT over an alphabet Σ = 𝔽𝑠
𝑞 is the 𝑠-wise tensor product of QFT𝑞: for x = (𝑥1, … , 𝑥𝑠) ∈ Σ,

QFTΣ |x⟩ ∶= QFT⊗𝑠
𝑞 |𝑥1⟩ … |𝑥𝑠⟩ = 1

√|Σ|
∑
z∈Σ

𝜔Tr(x⋅z)
𝑟 |z⟩ .

Similarly, for any positive integer 𝑛 and x ∈ Σ𝑛, we have

QFT⊗𝑛
Σ |x⟩ = 1

|Σ|𝑛/2 ∑
z∈Σ𝑛

𝜔Tr(x⋅z)
𝑟 |z⟩ .

The unitaryQFT𝑞 can be approximated within error 𝜀 in operator norm in time poly(log 𝑞, log 1/𝜀) [CW02, vDHI06].

12

Definition 5.5 (Fourier transform of a function [YZ24]). For functions 𝑓, 𝑔 ∶ Σ𝑛 → ℂ, we define

̂𝑓(z) ∶= 1
|Σ|𝑛/2 ∑

x∈Σ𝑛
𝑓(x)𝜔Tr(x⋅z)

𝑟 , (𝑓 ⋅ 𝑔)(x) ∶= 𝑓(x) ⋅ 𝑔(x), and (𝑓 ⋆ 𝑔)(x) ∶= ∑
y∈Σ𝑛

𝑓(y) ⋅ 𝑔(x− y).

Note that
QFT⊗𝑛

Σ ∑
x∈Σ𝑛

𝑓(x) |x⟩ = ∑
z∈Σ𝑛

̂𝑓(z) |z⟩ .

Fact 5.6 ([YZ24]). The following properties hold for the Fourier transform:

1. (Parseval’s equality) For all functions 𝑓 ∶ Σ𝑛 → ℂ, ∑x∈Σ𝑛 |𝑓(x)|2 = ∑z∈Σ𝑛 | ̂𝑓(z)|2.

2. (Pointwise transform) Suppose that we have 𝑓𝑖 ∶ Σ → ℂ for 𝑖 ∈ [𝑛] and 𝑓 ∶ Σ𝑛 → ℂ is defined by 𝑓(x) ∶=
∏𝑛

𝑖=1 𝑓𝑖(𝑥𝑖). Then ̂𝑓(z) = ∏𝑛
𝑖=1

̂𝑓𝑖(𝑧𝑖).

3. (Convolution theorem) For all functions 𝑓, 𝑔, ℎ ∶ Σ𝑛 → ℂ, 𝑓 ⋅ 𝑔 = 1
|Σ|𝑛/2 (̂𝑓 ⋆ ̂𝑔), 𝑓 ⋆ 𝑔 = |Σ|𝑛/2(̂𝑓 ⋅ ̂𝑔), and

̂𝑓 ⋅ (𝑔 ⋆ ℎ) = (̂𝑓 ⋆ (̂𝑔 ⋅ ℎ̂)).
Lemma 5.7 (Fourier transform of a linear code). Let 𝐶 ⊆ Σ𝑛 = (𝔽𝑠

𝑞)𝑛 be any 𝔽𝑞-linear code. Then,

𝑓(u) = {
1

√|𝐶| if u ∈ 𝐶 ,
0 otherwise.

⟺ ̂𝑓(u) = {
1

√|𝐶⟂| if u ∈ 𝐶⟂,
0 otherwise.

Proof. Since 𝐶 is 𝔽𝑞-linear, |𝐶| ⋅ |𝐶⟂| = |Σ|𝑛, and thus for any z ∈ 𝐶⟂,

̂𝑓(z) = 1
|Σ|𝑛/2 ∑

u∈Σ𝑛
𝑓(u)𝜔Tr(u⋅z)

𝑟 = 1
|Σ|𝑛/2 ∑

u∈𝐶

1
√|𝐶|

= 1
√|𝐶⟂|

.

Finally, ̂𝑓(z) = 0 for z ∉ 𝐶⟂ by Parseval’s equality. The reverse direction follows by an identical argument.

Lemma 5.8. Let |𝜓⟩, |𝜙⟩ be states such that ‖|𝜓⟩‖ = 1 and ‖|𝜓⟩ − |𝜙⟩‖ ≤ 𝜀 < 1. Then, ∥|𝜓⟩ − |𝜙⟩
‖|𝜙⟩‖ ∥ ≤ 2𝜀.

Proof. By the reverse/inverse triangle inequality,

|‖ |𝜙⟩ ‖ − 1| = |‖ |𝜙⟩ ‖ − ‖ |𝜓⟩ ‖| ≤ ‖ |𝜙⟩ − |𝜓⟩ ‖ = 𝜀 ⟹ ‖ |𝜙⟩ ‖ ≥ 1 − 𝜀 > 0.

We can thus define the normalized state |𝜙′⟩ ∶= |𝜙⟩
‖|𝜙⟩‖ . By the regular triangle inequality,

‖ |𝜓⟩ − |𝜙′⟩ ‖ ≤ ‖ |𝜓⟩ − |𝜙⟩ ‖ + ‖ |𝜙⟩ − |𝜙′⟩ ‖ ≤ 𝜀 + |‖ |𝜙⟩ ‖ − 1| ≤ 2𝜀.

Lemma 5.9 ([BV93]). Let |𝜓⟩ , |𝜙⟩ be states such that ‖ |𝜓⟩ ‖ = ‖ |𝜙⟩ ‖ = 1 and ‖ |𝜓⟩ − |𝜙⟩ ‖ ≤ 𝜀. Then the total
variation distance between the probability distributions resulting from measurements of |𝜙⟩ and |𝜓⟩ is at most 4𝜀.

Now we state the main algorithmic result of [YZ24], namely that a quantum algorithm can approximately
implement the convolution trick for some families of functions.

Lemma 5.10 ([YZ24]). Let |𝜓⟩ and |𝜙⟩ be quantum states on a quantum system over an alphabet Σ = 𝔽𝑠
𝑞 written as

|𝜓⟩ = ∑
u∈Σ𝑛

𝑉 (u) |u⟩ and |𝜙⟩ = ∑
e∈Σ𝑛

𝑊(e) |e⟩ ,

for functions 𝑉 , 𝑊 ∶ Σ𝑛 → ℂ. Let 𝐹 ∶ Σ𝑛 → Σ𝑛 be a function and let GOOD ⊆ Σ𝑛 × Σ𝑛 be a subset such that for any
(u, e) ∈ GOOD, we have 𝐹(u+ e) = u. Define BAD ∶= (Σ𝑛 × Σ𝑛) ∖ GOOD. Suppose that

∑
(u,e)∈BAD

|𝑉 (u)𝑊(e)|2 ≤ 𝜀 and ∑
z∈Σ𝑛

∣ ∑
(u,e)∈BAD∶u+e=z

𝑉 (u)𝑊(e)∣
2

≤ 𝛿 .

13

Define the unitaries 𝑈add and 𝑈𝐹 as follows:

𝑈add = ∑
(u,e)∈Σ𝑛×Σ𝑛

|u+ e,u⟩⟨e,u| and 𝑈𝐹 = ∑
(u,w)∈Σ𝑛×Σ𝑛

|w,u− 𝐹(w)⟩⟨w,u| .

Then,

∥(QFT−1,⊗𝑛
Σ ⊗ id) ⋅ 𝑈𝐹 ⋅ 𝑈add ⋅ (QFT⊗𝑛

Σ ⊗ QFT⊗𝑛
Σ) |𝜙⟩ |𝜓⟩ − |Σ|𝑛/2 ∑

z∈Σ𝑛
(𝑉 (z) ⋅ 𝑊(z)) |z⟩ |0⟩∥ ≤ √𝜀 +

√
𝛿 .

Lemmas 5.8 to 5.10 imply the following corollary (as the QFT, 𝑈add, and 𝑈𝐹 are unitaries).

Corollary 5.11. Let 𝑉 and 𝑊 be functions, and 𝜖 and 𝛿 be the corresponding error parameters from Lemma 5.10. For
any property 𝒫 ∶ Σ𝑛 → {0, 1}, if ‖ |𝜙⟩ ‖ = ‖ |𝜓⟩ ‖ = 1 and measuring (in the standard basis) the normalization of

|Σ|𝑛/2 ∑
z∈Σ𝑛

(𝑉 (z) ⋅ 𝑊(z)) |z⟩ |0⟩ ,

produces an outcome z such that 𝒫(z) = 1 with probability 𝑝, then measuring (in the standard basis)

(QFT−1,⊗𝑛
Σ ⊗ id) ⋅ 𝑈𝐹 ⋅ 𝑈add ⋅ (QFT⊗𝑛

Σ ⊗ QFT⊗𝑛
Σ) |𝜙⟩ |𝜓⟩ ,

produces an outcome z such that 𝒫(z) = 1 with probability at least 𝑝 − 8(√𝜀 +
√

𝛿).

5.2 Technical Lemmas
In this section, we state some technical lemmas to extend the Yamakawa-Zhandry algorithm to work with biased
oracles. We first introduce a pair of functions 𝑉 and 𝑊 that represent normalized indicators for a code 𝐶 and the
preimages of any output b for a function 𝐻 . For any 𝔽𝑞-linear code 𝐶 ⊆ Σ𝑛 = (𝔽𝑠

𝑞)𝑛, function 𝐻 ∶ [𝑛] × Σ →
{0, 1}, and string b ∈ {0, 1}𝑛, let 𝑉 ∶ Σ𝑛 → ℂ, 𝑊 𝐻𝑖,𝑏𝑖

𝑖 ∶ Σ → ℂ, and 𝑊 𝐻,b ∶ Σ𝑛 → ℂ be defined as follows:

𝑉 (u) = {
1

√|𝐶| u ∈ 𝐶
0 otherwise

,

𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑒) =

⎧{
⎨{⎩

1
√|𝑇 𝐻𝑖,𝑏𝑖

𝑖 |
𝑒 ∈ 𝑇 𝐻𝑖,𝑏𝑖

𝑖

0 otherwise
,

𝑊 𝐻,b(𝑒1, … , 𝑒𝑛) =
𝑛

∏
𝑖=1

𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑒𝑖) ,

where 𝑇 𝐻𝑖,𝑏𝑖
𝑖 ⊆ Σ is the subset consisting of 𝑒𝑖 ∈ Σ such that 𝐻𝑖(𝑒𝑖) = 𝑏𝑖.

Definition 5.12 (𝑝-biased distribution). For any 𝑝 ∈ [0, 1] and set Σ, let Bias𝑝,Σ denote the distribution over functions
from Σ to {0, 1} that samples 𝐹 ∶ Σ → {0, 1} with probability 𝑝|𝐹 −1(1)|(1 − 𝑝)|𝐹 −1(0)|. Let Bias𝑛,𝑝,Σ denote the
distribution over functions 𝐺 ∶ [𝑛] × Σ → {0, 1} that samples 𝐺 with probability Bias𝑛,𝑝,Σ(𝐺) ∶= ∏𝑛

𝑖=1 Bias𝑝,Σ(𝐺𝑖).

The following claim follows immediately from the definition of Bias𝑛,𝑝,Σ.

Claim 5.13. Let 𝜋 be any permutation over Σ (resp. Σ𝑛). Then, the distributions Bias𝑝,Σ and Bias𝑝,Σ ∘𝜋 (resp. Bias𝑛,𝑝,Σ
and Bias𝑛,𝑝,Σ ∘ 𝜋) are identical.

The following lemma shows that when we take the Fourier transform of the preimage state of 𝐻𝑖 sampled
from Bias𝑝,Σ, the resulting Fourier coefficients are uniform over all non-zero elements of Σ, and have constant
weight (either 𝑝 or 1 − 𝑝 depending on if we are taking the preimage of 0 or 1) on 0.

14

Claim 5.14. Fix any string b ∈ {0, 1}𝑛, for all 𝑖 ∈ [𝑛] and 𝜎, 𝜎′ ∈ Σ ∖ {0}, it holds that

𝔼
𝐻𝑖←Bias𝑝,Σ

[|𝑊 𝐻𝑖,𝑏𝑖
𝑖 (0)|2] = {𝑝 if 𝑏𝑖 = 1

1 − 𝑝 if 𝑏𝑖 = 0 and 𝔼
𝐻𝑖←Bias𝑝,Σ

[|𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝜎)|2] = 𝔼

𝐻𝑖←Bias𝑝,Σ
[|𝑊 𝐻𝑖,𝑏𝑖

𝑖 (𝜎′)|2].

Proof. We can directly compute the expected Fourier weight on 0 as follows:

𝔼
𝐻𝑖←Bias𝑝,Σ

[∣𝑊 𝐻𝑖,𝑏𝑖
𝑖 (0)∣

2
] = 𝔼

𝐻𝑖←Bias𝑝,Σ

⎡⎢
⎣

∣ 1
√|Σ|

∑
𝑧∈Σ

𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑧)∣

2
⎤⎥
⎦

=
𝔼 𝐻𝑖

[∣𝑇 𝐻𝑖,𝑏𝑖
𝑖 ∣]

|Σ| = {𝑝 if 𝑏𝑖 = 1
1 − 𝑝 if 𝑏𝑖 = 0 .

Since 𝜎 ≠ 0 (resp. 𝜎′ ≠ 0), for any 𝑤 ∈ 𝔽𝑞, the number of 𝑧 ∈ Σ such that 𝜎 ⋅ 𝑧 = 𝑤 is |Σ|/𝑞. Therefore, there is
a permutation 𝜋𝑒,𝑒′ ∶ Σ → Σ such that 𝜎 ⋅ 𝑧 = 𝜎′ ⋅ 𝜋𝜎,𝜎′(𝑧) for all 𝑧 ∈ Σ. Thus, by Claim 5.13,

𝔼
𝐻𝑖←Bias𝑝,Σ

[∣𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝜎)∣

2
] = 𝔼

𝐻𝑖←Bias𝑝,Σ

⎡⎢
⎣

∣ 1
√|Σ|

∑
𝑧∈Σ

𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑧) ⋅ 𝜔Tr(𝜎⋅𝑧)

𝑟 ∣
2
⎤⎥
⎦

= 𝔼
𝐻𝑖←Bias𝑝,Σ

⎡⎢
⎣

∣ 1
√|Σ|

∑
𝑧∈Σ

𝑊 𝐻𝑖∘𝜋−1
𝜎,𝜎′ ,𝑏𝑖

𝑖 (𝜋𝜎,𝜎′(𝑧)) ⋅ 𝜔Tr(𝜎′⋅𝜋𝜎,𝜎′ (𝑧))
𝑟 ∣

2
⎤⎥
⎦

= 𝔼
𝐻𝑖←Bias𝑝,Σ

⎡⎢
⎣

∣ 1
√|Σ|

∑
𝑧∈Σ

𝑊 𝐻𝑖∘𝜋−1
𝜎,𝜎′ ,𝑏𝑖

𝑖 (𝑧) ⋅ 𝜔Tr(𝜎′⋅𝑧)
𝑟 ∣

2
⎤⎥
⎦

= 𝔼
𝐻𝑖←Bias𝑝,Σ

⎡⎢
⎣

∣ 1
√|Σ|

∑
𝑧∈Σ

𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑧) ⋅ 𝜔Tr(𝜎′⋅𝑧)

𝑟 ∣
2
⎤⎥
⎦

= 𝔼
𝐻𝑖←Bias𝑝,Σ

[∣𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝜎′)∣

2
] .

For any function Dec𝐶⟂ ∶ Σ𝑛 → Σ𝑛, define the sets 𝒢 ∶= {e ∈ Σ𝑛 ∶ ∀u ∈ 𝐶⟂, Dec𝐶⟂(u+ e) = u}, ℬ ∶= Σ𝑛 ∖ 𝒢,
GOOD ∶= 𝐶⟂ × 𝒢 and BAD ∶= (Σ𝑛 × Σ𝑛) ∖ GOOD. By construction, Dec𝐶⟂(u+ e) = u for all (u, e) ∈ GOOD.
Applying the definition of 𝑉 from Lemma 5.7, we see that for all b ∈ {0, 1}𝑛 and functions 𝐻 ,

∑
(u,e)∈BAD

∣𝑉 (u)𝑊 𝐻,b(e)∣2 = ∑
u∈𝐶⟂

∑
e∈ℬ

∣ 1
√|𝐶⟂|

𝑊 𝐻,b(e)∣
2

= ∑
e∈ℬ

∣𝑊 𝐻,b(e)∣2 .

We can apply the same logic to get that

∑
z∈Σ𝑛

∣ ∑
(u,e)∈BAD∶u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)∣
2

= ∑
z∈Σ𝑛

∣
∣
∣
∣

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2

.

Definition 5.15. Let 𝒟𝑝,𝑏 be the distribution over Σ that takes 0 with probability 1 − 𝑝 if 𝑏 = 0 (resp. probability 𝑝 if
𝑏 = 1) and otherwise takes a uniformly random element of Σ ∖ {0}. For any bitstring b ∈ {0, 1}𝑛, define the distribution
𝒟𝑝,b over Σ𝑛 to be the Cartesian product of the distributions 𝒟𝑝,b𝑖

.

Definition 5.16. Fix any 𝔽𝑞-linear code 𝐶 ⊆ Σ𝑛, function Dec𝐶⟂ ∶ Σ𝑛 → Σ𝑛, set 𝑆 ⊆ {0, 1}𝑛, 𝑝 ∈ [0, 1], and real-
valued function 𝜇 ∶ ℕ → ℝ. (𝐶, Dec𝐶⟂) is said to be (𝑝, 𝜇, 𝑆)-good if for all 𝜆 ∈ ℕ and b ∈ 𝑆 , Pre←𝒟𝑝,b

[e ∈ ℬ] ≤ 𝜇(𝜆).

Lemma 5.17. Suppose that (𝐶, Dec𝐶⟂) is (𝑝, 𝜇, 𝑆)-good. Then, for all 𝜆 ∈ ℕ and b ∈ 𝑆 ,

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
e∈ℬ

∣𝑊 𝐻,b(e)∣2] ≤ 𝜇(𝜆) .

15

Proof. By Claim 5.14, 𝒟𝑝,𝑏𝑖
(𝑒𝑖) = 𝔼 𝐻𝑖

[|𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑒𝑖)|2] for all 𝑒𝑖 ∈ Σ where (slightly abusing notation) 𝒟𝑝,𝑏𝑖

(⋅) is
the density function of the distribution 𝒟𝑝,𝑏𝑖

. Moreover, for any e = (𝑒1, … , 𝑒𝑛) ∈ Σ𝑛, string b and function
𝐻 , since 𝑊 𝐻,b(e) = ∏𝑛

𝑖=1 𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑒𝑖), by Fact 5.6, we have that 𝑊 𝐻,b(e) = ∏𝑛

𝑖=1 𝑊 𝐻𝑖,𝑏𝑖
𝑖 (𝑒𝑖). Thus, 𝒟𝑝,b(e) =

𝔼 𝐻←Bias𝑛,𝑝,Σ
[|𝑊 𝐻,b(e)|2] for all e ∈ Σ𝑛. By linearity of expectation, we see that for all 𝜆 ∈ ℕ and b ∈ 𝑆,

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
e∈ℬ

∣𝑊 𝐻,b(e)∣2] = ∑
e∈ℬ

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∣𝑊 𝐻,b(e)∣2] = ∑
e∈ℬ

𝒟𝑝,b(e) = Pr
e←𝒟𝑝,b

[e ∈ ℬ] ≤ 𝜇(𝜆) .

Wedefine the function𝐵 ∶ Σ𝑛 → ℂ to be the inverse Fourier transform of the indicator function𝐵(e) = 𝟙e∈ℬ.
Claim 5.18. Suppose that (𝐶, Dec𝐶⟂) is (𝑝, 𝜇, 𝑆)-good. Then for all 𝜆 ∈ ℕ, b ∈ 𝑆 , and z ∈ Σ𝑛,

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∣(𝐵 ⋆ 𝑊 𝐻,b)(z)∣2] ≤ 𝜇(𝜆).

Proof. For z0, z1 ∈ Σ𝑛, define the permutation 𝜋z0,z1
∶ Σ𝑛 → Σ𝑛 as 𝜋z0,z1

(z) ∶= z+ z0 − z1. By Claim 5.13,

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∣(𝐵 ⋆ 𝑊 𝐻,b)(z0)∣2] = 𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢
⎣

∣ ∑
x∈Σ𝑛

𝐵(x) ⋅ 𝑊 𝐻,b(z0 − x)∣
2
⎤⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢
⎣

∣ ∑
x∈Σ𝑛

𝐵(x) ⋅ 𝑊 𝐻∘𝜋z0,z1 ,b(z1 − x)∣
2
⎤⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢
⎣

∣ ∑
x∈Σ𝑛

𝐵(x) ⋅ 𝑊 𝐻,b(z1 − x)∣
2
⎤⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∣(𝐵 ⋆ 𝑊 𝐻,b)(z1)∣2] .

Thus, by Lemma 5.17, we have that for all 𝜆 ∈ ℕ, b ∈ 𝑆, and z ∈ Σ𝑛,

𝔼
𝐻←Bias𝑛,𝑝,Σ

[∣(𝐵 ⋆ 𝑊 𝐻,b)(z)∣2] = 1
|Σ|𝑛 𝔼

𝐻←Bias𝑛,𝑝,Σ
[∑
z∈Σ𝑛

∣(𝐵 ⋆ 𝑊 𝐻,b)(z)∣2]

= 1
|Σ|𝑛 𝔼

𝐻←Bias𝑛,𝑝,Σ
[∑
z∈Σ𝑛

∣|Σ|𝑛/2𝐵(z) ⋅ 𝑊 𝐻,b(z)∣2]

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
z∈Σ𝑛

∣𝐵(z) ⋅ 𝑊 𝐻,b(z)∣2]

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
z∈ℬ

∣𝑊 𝐻,b(z)∣2] ≤ 𝜇(𝜆) .

Claim 5.19. For any function 𝐻 and string b ∈ {0, 1}𝑛, it holds that

∑
z∈Σ𝑛

∣
∣
∣
∣

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2

= ∑
z∈Σ𝑛

∣(𝑉 ⋅ (𝐵 ⋆ 𝑊 𝐻,b))(z)∣2 .

Proof. For any z ∈ Σ𝑛, we use the fact that 𝑉 (x) = 0 for x ∉ 𝐶⟂ to show that

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e) = ∑
u∈Σ𝑛,e∈Σ𝑛∶

u+e=z

𝑉 (u) ⋅ 𝐵(e) ⋅ 𝑊 𝐻,b(e) = (𝑉 ⋆ (𝐵 ⋅ 𝑊 𝐻,b))(z) = (̂𝑉 ⋅ (𝐵 ⋆ 𝑊 𝐻,b))(z) .

The claim then follows from Parseval’s equality.

16

Corollary 5.20. Suppose that (𝐶, Dec𝐶⟂) is (𝑝, 𝜇, 𝑆)-good. Then for all 𝜆 ∈ ℕ and b ∈ 𝑆 ,

𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢⎢
⎣

∑
z∈Σ𝑛

∣
∣
∣
∣

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2
⎤⎥⎥
⎦

≤ 𝜇(𝜆).

Proof. By Claims 5.18 and 5.19, we have that for all 𝜆 ∈ ℕ and b ∈ 𝑆,

𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢⎢
⎣

∑
z∈Σ𝑛

∣
∣
∣
∣

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2
⎤⎥⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
z∈Σ𝑛

∣(𝑉 ⋅ (𝐵 ⋆ 𝑊 𝐻,b))(z)∣2]

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
z∈𝐶

1
|𝐶| ∣(𝐵 ⋆ 𝑊 𝐻,b)(z)∣2]

= 1
|𝐶| ∑

z∈𝐶
𝔼

𝐻←Bias𝑛,𝑝,Σ
[∣(𝐵 ⋆ 𝑊 𝐻,b)(z)∣2]

≤ 1
|𝐶| ∑

z∈𝐶
𝜇(𝜆) = 𝜇(𝜆) .

5.3 The Biased Yamakawa-Zhandry Algorithm
We are now ready to present our modified algorithm for handling biased oracles.

Definition 5.21 (The Yamakawa-Zhandry advice state). For a code 𝐶 ⊆ Σ𝑛 and function 𝐻 ∶ [𝑛] × Σ → {0, 1},
define the sets 𝑆𝑖,𝑏 ∶= {𝑒 ∈ Σ ∶ 𝐻(𝑖, 𝑒) = 𝑏} for (𝑖, 𝑏) ∈ [𝑛] × {0, 1}. Let ∣𝜙𝑖,𝑏⟩ and |𝜓⟩ denote the following states:

∣𝜙𝑖,𝑏⟩ =
⎧{
⎨{⎩

1
√|𝑆𝑖,𝑏|

∑𝑒∈𝑆𝑖,𝑏
|𝑒⟩ if |𝑆𝑖,𝑏| ≠ 0

|⊥⟩ otherwise
and |𝜓⟩ = 1

√|𝐶|
∑
u∈𝐶

|u⟩ .

We define the advice state for (𝐶, 𝐻), denoted by ∣adv𝐶,𝐻⟩ (or |adv𝐻⟩ when the code 𝐶 is implicit) as follows:

|adv𝐻⟩ ∶= {(⨂𝑛
𝑖=1 ∣𝜙𝑖,0⟩ ⊗ ∣𝜙𝑖,1⟩) ⊗ |𝜓⟩ if ∣𝜙𝑖,𝑏⟩ ≠ |⊥⟩ for all (𝑖, 𝑏) ∈ [𝑛] × {0, 1},

|⊥⟩ otherwise.

Theorem 5.22. Fix any 𝔽𝑞-linear code 𝐶 ⊆ Σ𝑛 = (𝔽𝑠
𝑞)𝑛, function Dec𝐶⟂ ∶ Σ𝑛 → Σ𝑛, set 𝑆 ⊆ {0, 1}𝑛, 𝑝 ∈ [0, 1/2],

and function 𝜇 ∶ ℕ → [0, 1] such that (𝐶, Dec𝐶⟂) is (𝑝, 𝜇, 𝑆)-good. Let BiasedYZ = BiasedYZDec𝐶⟂ be the quantum
algorithm described in Figure 1 and |adv𝐻⟩ be the state described in Definition 5.21. Then, for all 𝜆 ∈ ℕ:

1. BiasedYZ runs in time poly(𝑛, 𝑠, log 𝑞, 𝜆) + 𝑇Dec, where 𝑇Dec is the time required to compute Dec𝐶⟂ .
2. For all 𝐶 and 𝐻 , |adv𝐻⟩ is a 𝑂(𝑠𝑛 log 𝑞)-qubit state.
3. For all strings b ∈ 𝑆 ,

Pr
𝐻←Bias𝑛,𝑝,Σ

[Pr
BiasedYZ

[(b, v) ∈ 𝑅𝐶,𝐻 ∶ v ← BiasedYZ(|adv𝐻⟩ ,b)] ≥ 1 − 16𝜇(𝜆)1/4 − 2−4𝜆]

≥ 1 − (2𝑛(1 − 𝑝)|Σ| + 2𝜇(𝜆)1/2) .

Proof. Throughout this proof, we assume that 2𝜇(𝜆)1/4 < 1, since the theorem holds trivially otherwise. Upon
inspection, we see that |adv𝐻⟩ is a 𝑂(2𝑛 log(|Σ|) + log(|Σ|𝑛)) = 𝑂(𝑠𝑛 log 𝑞)-qubit state.

We now analyze the runtime of BiasedYZ. First, observe that step 1 runs in time 𝑂(𝑠𝑛 log 𝑞). To imple-
ment steps 2 and 5, note that QFT⊗𝑛

Σ (and its inverse) can be implemented with total error at most 2−4𝜆/4 in

17

BiasedYZDec𝐶⟂ (|adv𝐻⟩ ,b):

1. If |adv𝐻⟩ ≠ |⊥⟩, construct the state (⨂𝑛
𝑖=1 |𝜙𝑖,b𝑖

⟩)A ⊗ |𝜓⟩B by re-arranging |adv𝐻⟩; else, return ⊥.

2. Apply (QFT⊗𝑛
Σ)A ⊗ (QFT⊗𝑛

Σ)B.

3. Controlled on register B, add the value of register B to register A.

4. Apply Dec𝐶⟂ to uncompute register B given the value of register A.

5. Apply (QFT−1,⊗𝑛
Σ)A ⊗ idB and measure register A to get an outcome v ∈ Σ𝑛. Output v.

Figure 1: Biased Yamakawa-Zhandry Algorithm BiasedYZDec𝐶⟂ (|adv𝐻⟩ ,b)

poly(𝑛, 𝑠, log 𝑞, log 24𝜆) = poly(𝑛, 𝑠, log 𝑞, 𝜆) time. Finally, step 3 consists of adding in Σ, which can be done
in poly(𝑛, 𝑠, log 𝑞) time, and step 4 takes time 𝑇Dec by definition. In total, we have that BiasedYZ runs in time
𝑂(𝑠𝑛 log 𝑞) + poly(𝑛, 𝑠, log 𝑞, 𝜆) + poly(𝑛, 𝑠, log 𝑞) + 𝑇Dec = poly(𝑛, 𝑠, log 𝑞, 𝜆) + 𝑇Dec.

We finish by analyzing the correctness of BiasedYZ. For fixed (𝑖, 𝑏) ∈ [𝑛] × {0, 1}, ∣𝜙𝑖,𝑏⟩ ≠ |⊥⟩ with prob-
ability at least 1 − (1 − 𝑝)|Σ| (as long as at least one symbol hashes to 𝑏 under 𝐻(𝑖, ⋅)). By a union bound,
|adv𝐻⟩ ≠ |⊥⟩ with probability at least 1 − 2𝑛(1 − 𝑝)|Σ|. Thus, using the definition of 𝑉 and 𝑊 from Section 5.2,
we will assume for the remainder of the proof that |adv𝐻⟩ = ∑u,e∈Σ𝑛 𝑉 (u)𝑊(e) |u⟩ |e⟩. Then, by Lemma 5.17
and Corollary 5.20, we have that for all b ∈ 𝑆,

𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢
⎣

∑
(u,e)∈BAD

∣𝑉 (u) ⋅ 𝑊 𝐻,b(e)∣2⎤⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

[∑
e∈ℬ

∣𝑊 𝐻,b(e)∣2] ≤ 𝜇(𝜆)

and

𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢⎢
⎣

∑
z∈Σ𝑛

∣
∣
∣
∣

∑
(u,e)∈BAD∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2
⎤⎥⎥
⎦

= 𝔼
𝐻←Bias𝑛,𝑝,Σ

⎡⎢⎢
⎣

∑
z∈Σ𝑛

∣
∣
∣
∣

∑
u∈𝐶⟂,e∈ℬ∶
u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)
∣
∣
∣
∣

2
⎤⎥⎥
⎦

≤ 𝜇(𝜆) .

Fixing b ∈ 𝑆, Markov’s inequality and the union bound implies that 𝐻 satisfies both

∑
(u,e)∈BAD

∣𝑉 (u) ⋅ 𝑊 𝐻,b(e)∣2 ≤ 𝜇(𝜆)1/2 and ∑
z∈Σ𝑛

∣ ∑
(u,e)∈BAD∶u+e=z

𝑉 (u) ⋅ 𝑊 𝐻,b(e)∣
2

≤ 𝜇(𝜆)1/2

with probability at least 1 − 2𝜇(𝜆)1/2 over Bias𝑛,𝑝,Σ. For these 𝐻 , by Lemma 5.10,

∥ (QFT−1,⊗𝑛
Σ ⊗ id) ⋅ 𝑈Dec𝐶⟂

𝜆
⋅ 𝑈add ⋅ (QFT⊗𝑛

Σ ⊗ QFT⊗𝑛
Σ)

𝑛
⨂
𝑖=1

|𝜙𝑖,b𝑖
⟩ ⊗ |𝜓⟩

− |Σ|𝑛/2 ∑
z∈Σ𝑛

(𝑉 (z) ⋅ 𝑊 𝐻,b(z)) |z⟩ |0⟩ ∥ ≤ 2𝜇(𝜆)1/4 .

Since |adv𝐻⟩ ≠ |⊥⟩ and 2𝜇(𝜆)1/4 < 1, the state |tgt⟩ = |Σ|𝑛/2 ∑z∈Σ𝑛(𝑉 (z) ⋅ 𝑊 𝐻,b(z)) |z⟩ is nonzero. But
measuring (the normalization of) |tgt⟩ in the standard basis always produces vectors v such that (b, v) ∈ 𝑅𝐶,𝐻 .
Thus, by Corollary 5.11, the output of BiasedYZ will be a vector v such that (b, v) ∈ 𝑅𝐶𝜆,𝐻 with probability at
least 1 − 16𝜇(𝜆)1/4 − 2−4𝜆 (where the 2−4𝜆 term comes from approximating the QFT).

We conclude that with probability 1 − (2𝑛(1 − 𝑝)|Σ| + 2𝜇(𝜆)1/2) over Bias𝑛,𝑝,Σ, BiasedYZ succeeds with
probability at least 1 − 16𝜇(𝜆)1/4 − 2−4𝜆 for any given b ∈ 𝑆, as desired.

18

Finally, we show that our choice of code satisfies the required conditions of Theorem 5.22.
Corollary 5.23. For each security parameter 𝜆 ∈ ℕ, define the code 𝐶𝜆 = Mult𝑠,𝔽𝑞,𝑘, where 𝜆5 < 𝑞 ≤ 2𝜆5 is a prime,
𝑘 = 𝜆3, and 𝑠 = 𝜆. Then, there exists an efficient/uniform quantum algorithm BiasedYZ and a family of poly(𝜆)-qubit
states {|adv𝐻⟩}𝐻 such that the following holds for sufficiently large 𝜆, for all strings 𝑥 ∈ {0, 1}𝜆,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← BiasedYZ(|adv𝐻⟩ , 𝑥)] ≥ 1 − 2−𝜆] ≥ 1 − 2−2𝜆.

Proof. We begin by arguing that there exists a deterministic algorithm Dec𝐶⟂
𝜆
and function 𝜇 that for sufficiently

large 𝜆 satisfies 𝜇(𝜆) ≤ 2−8𝜆, such that 𝑇Dec = poly(𝜆) and (𝐶𝜆, Dec𝐶⟂
𝜆
) is (1

𝜆4 , 𝜇, {0, 1}𝜆 × 0𝑞−𝜆)-good. Define
the subset 𝒢 ∶= {e ∈ Σ𝑞 ∶ hw(e[𝜆+1∶𝑞]) ≤ 11

𝜆4 (𝑞 − 𝜆)}. By the Chernoff bound (Lemma 4.9), for any 𝑥 ∈ {0, 1}𝜆,

Pr
e←𝒟1/𝜆4,𝑥‖0𝑞−𝜆

[e ∉ 𝒢] = Pr
e←𝒟1/𝜆4,𝑥‖0𝑞−𝜆

[hw(e[𝜆+1∶𝑞]) > 11 ⋅ (𝑞 − 𝜆)
𝜆4] ≤ 𝑒− 100𝜆

12 ≤ 2−8𝜆 ,

so it suffices to consider decoding only errors e ∈ 𝒢. Theorem 4.19 implies that for all e ∈ 𝒢 (assuming 𝜆 ≥ 50),

hw(e) = hw(e[1∶𝜆]) + hw(e[𝜆+1∶𝑞]) < 𝜆 + 11
𝜆4 (𝑞 − 𝜆) ≤ 25𝜆 ≤ 𝜆2/2 ≤ dist(𝐶⟂

𝜆)/2 .

It therefore suffices to uniquely decode 𝐶⟂
𝜆 in a deterministic and efficient manner. We set 𝜇 to be the maximum

probability (across all 𝑥) that unique decoding for 𝐶⟂
𝜆 fails with error distribution 𝒟1/𝜆4,𝑥‖0𝑞−𝜆 ; thus, by our

previous argument, 𝜇(𝜆) ≤ 2−8𝜆 as long as 𝜆 ≥ 50.
By Theorem A.5, we know that 𝐶⟂

𝜆 = GM𝑠,𝔽𝑞
(𝑈1, … , 𝑈𝑞; 1, … , 𝑞; 𝑠𝑞 − 𝑘). From Lemma A.3, it is easy to

see that 𝐴𝑖,𝑗(𝑋) can be computed in poly(𝑠, 𝑞) = poly(𝜆) time, and thus 𝑎𝑖,𝑗 (and consequently 𝑈𝑖 and 𝑈−1
𝑖) can

be computed in poly(𝜆) time. Finally, it remains to efficiently uniquely decode Mult𝑠,𝔽𝑞,𝑠𝑞−𝑘, which we can do
deterministically in poly(𝑠, 𝑞) = poly(𝜆) time [Nie01, KSY14, Kop15].5

Applying Theorem 5.22 gives a family of poly(𝜆)-qubit states {|adv𝐻⟩}𝐻 and a poly(𝜆)-time uniform algo-
rithm ℬ such that for 𝜆 ≥ 50 and all strings 𝑥 ∈ {0, 1}𝜆,

Pr
𝐻←Bias𝑞,1/𝜆4,Σ

[Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← ℬ(|adv𝐻⟩ , 𝑥‖0𝑞−𝜆)] ≥ 1 − 2−2𝜆+4 − 2−4𝜆] ≥ 1 − 2𝑞(1 − 𝑝)|Σ| − 2−4𝜆+1

⟹ Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← ℬ(|adv𝐻⟩ , 𝑥‖0𝑞−𝜆)] ≥ 1 − 2−𝜆] ≥ 1 − 2−2𝜆.

The algorithm BiasedYZ simply runs ℬ(|adv𝐻⟩ , 𝑥‖0𝑞−𝜆) given advice |adv𝐻⟩ and input 𝑥 ∈ {0, 1}𝜆.

We therefore have the following corollary by a simple union bound over all 𝑥 ∈ {0, 1}𝜆.
Corollary 5.24. For each security parameter 𝜆 ∈ ℕ, define the code 𝐶𝜆 = Mult𝑠,𝔽𝑞,𝑘, where 𝜆5 < 𝑞 ≤ 2𝜆5 is a prime,
𝑘 = 𝜆3, and 𝑠 = 𝜆. Then, there exists an efficient/uniform quantum algorithm BiasedYZ and a family of poly(𝜆)-qubit
states {|adv𝐻⟩}𝐻 such that for sufficiently large 𝜆,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[∀𝑥 ∈ {0, 1}𝜆,Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← BiasedYZ(|adv𝐻⟩ , 𝑥)] ≥ 1 − 2−𝜆] ≥ 1 − 2−𝜆 .

6 Separating QMA from QCMA
For the rest of the paper, we fix a code family 𝐶𝜆 ∶= Mult𝑠,𝔽𝑞,𝑘 for 𝜆5 < 𝑞 ≤ 2𝜆5 a prime,6 𝑘 = 𝜆3, and 𝑠 = 𝜆.
For any subset 𝐸 ⊆ {0, 1}𝜆 × Σ𝑞 and function 𝐻 ∶ [𝑞] × Σ → {0, 1}, we define the oracle

𝑂[𝐻, 𝐸](𝑥, v) = {1 if (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∧ (𝑥, v) ∈ 𝐸,
0 otherwise.

5In fact, a simple extension of the Berlekamp-Welch algorithm [WB86] gives efficient unique decoding for univariate multiplicity codes.
6To be concrete, we can take 𝑞 to be the smallest prime larger than 𝜆5 (which is always at most 2𝜆5).

19

Our proofs in this section are fairly standard and follow [BHNZ25], but we include them for completeness.
We begin by defining an oracle-input problem based on the code intersection subset size checking problem.

Note that our NO instances are slightly different than those considered in [LLPY23, BDK24], which will affect
the QCMA lower bound, but not the QMA containment.

Definition 6.1 (YES and NO instances of the code intersection subset size problem). Let Good denote the set of
functions 𝐻 ∶ [𝑞] × 𝔽𝑠

𝑞 → {0, 1} such that the algorithm in Corollary 5.24 succeeds on all 𝑥 ∈ {0, 1}𝜆 with probability at
least 2/3. Our oracle-input separation between QMA and QCMA involves distinguishing between 𝑂[𝐻, 𝐸] with 𝐻 and
𝐸 being the following:

1. YES instances: 𝐻 ∈ Good and 𝐸 = {0, 1}𝜆 × Σ𝑞 .
2. NO instances: 𝐻 ∈ Good and subsets 𝐸 ⊆ 𝐹 × Σ𝑞 ⊆ {0, 1}𝜆 × Σ𝑞 such that |𝐹 | ≤ 2𝜆/3.

Remark 6.2. One can also embed 𝑂[𝐻, 𝐸] ∶ {0, 1}𝜆 × Σ𝑞 → {0, 1} into a binary input domain oracle with 𝜆 +
𝑞 log |Σ| ≤ 𝜆7-bit inputs, in such a way that for sufficiently large 𝜆 ≥ 𝜆0 (where 𝜆0 ∈ ℕ is some constant), there is at
most one security parameter associated with each input length.

6.1 The QMA Proof System
We first show that there is a QMA proof system that distinguishes between YES and NO instances of the code
intersection subset size checking problem, as defined in Definition 6.1.

Lemma 6.3 (A QMA proof system). There exists a polynomial-time uniform quantum query algorithm 𝑉 which makes
one query to the oracle 𝑂[𝐻, 𝐸], such that for sufficiently large 𝜆, the following holds:

1. Completeness. For all 𝐻 ∈ Good, when 𝐸 = {0, 1}𝜆 × Σ𝑞 , there exists a poly(𝜆)-qubit state |adv𝐻⟩ such that

Pr[𝑉 𝑂[𝐻,𝐸](|adv𝐻⟩) = 1] ≥ 2
3.

2. Soundness. For all 𝐻 , sets 𝐸 ⊆ 𝐹 × Σ𝑞 ⊆ {0, 1}𝜆 × Σ𝑞 where |𝐹 | ≤ 2𝜆/3, and quantum states ∣adv∗
𝐻⟩,

Pr[𝑉 𝑂[𝐻,𝐸](∣adv∗
𝐻⟩) = 1] ≤ 1

3.

Proof. By definition, for 𝐻 ∈ Good as defined in Corollary 5.24, there exists a poly(𝜆)-qubit state |adv𝐻⟩ and
efficient algorithm BiasedYZ such that for any 𝑥 ∈ {0, 1}𝜆,

Pr
BiasedYZ

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← BiasedYZ(|adv𝐻⟩ , 𝑥)] ≥ 1 − 2−𝜆 ≥ 2
3.

The verifier 𝑉 operates as follows: it samples a uniformly random 𝑥 ∈ {0, 1}𝜆 and runs v ← BiasedYZ(|adv𝐻⟩ , 𝑥).
Finally, 𝑉 queries 𝑂 at (𝑥, v) and returns the output of 𝑂. The efficiency/uniformity of 𝑉 follows from the
efficiency of BiasedYZ and the fact that 𝑉 makes one oracle query.

We now argue completeness and soundness. If 𝐸 = {0, 1}𝜆 × Σ𝑞, then

Pr[𝑉 𝑂[𝐻,𝐸](|adv𝐻⟩) = 1] = Pr
BiasedYZ,𝑥

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← BiasedYZ(|adv𝐻⟩ , 𝑥)] ≥ 2
3 .

On the other hand, if 𝐸 ⊆ 𝐹 × Σ𝑞 ⊆ {0, 1}𝜆 × Σ𝑞 and |𝐹 | ≤ 2𝜆/3, then 𝑉 will never output 1 if 𝑥 ∉ 𝐹 . Thus,
for all 𝐻 and quantum states ∣adv∗

𝐻⟩,

Pr[𝑉 𝑂[𝐻,𝐸](∣adv∗
𝐻⟩) = 1] ≤ Pr

𝑥←{0,1}𝜆
[𝑥 ∈ 𝐹] ≤ 1

3 .

20

6.2 Non-Existence of QCMA Proof Systems
We begin by showing that any QCMA verifier/algorithm can be turned into a very good hash value guesser.

Lemma 6.4 (Good guessers fromQCMA algorithms). Assume there exists aQCMA algorithm𝒜 such that for instances
of size 𝜆, 𝒜 takes a 𝑡(𝜆)-bit witness and makes 𝑄(𝜆) oracle queries. Then for all ℓ ≤ 2𝜆/3, there exists a algorithm Guesser
which makes no queries such that for any 𝐻 ∈ Good,

Pr[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← Guesser(1ℓ)] ≥ 2−𝑡(𝜆) ⋅ (1

144𝑄(𝜆)2)
ℓ
.

Proof. The algorithm 𝒜𝒪[𝐻,𝐸] can be thought of starting from a state |𝑤, 0⟩ and applying a sequence of unitaries
𝑉0, … , 𝑉𝑄 interlaced with queries to 𝒪[𝐻, 𝐸] before measuring the first qubit in the standard basis. The state of
the algorithm right before its final measurement is then given by

𝑉𝑄 ⋅ 𝒪[𝐻, 𝐸] ⋅ 𝑉𝑄−1 ⋅ 𝒪[𝐻, 𝐸] … 𝒪[𝐻, 𝐸] ⋅ 𝑉0 |𝑤, 0⟩ .

Let Guesser be the algorithm described in Figure 2 which outputs ℓ tuples of codewords and hash values.

Guesser(1ℓ):
1. Sample a random 𝑤 ∈ {0, 1}𝑡 and initialize Δ0 = ∅.
2. For 𝑖 ∈ [ℓ]:

(a) Sample 𝑗 ← {0, … , 𝑄 − 1} uniformly randomly.
(b) Compute the state 𝑉𝑗𝒪Δ𝑖−1

𝑉𝑗−1 … 𝒪Δ𝑖−1
𝑉0 |𝑤, 0⟩, where 𝒪Δ𝑖−1

is the oracle unitary defined by

|𝑥, v⟩ |𝑦⟩ |𝑧⟩ ↦ |𝑥, v⟩ ∣𝑦 ⊕ 𝑓Δ𝑖−1
(𝑥, v)⟩ |𝑧⟩ , where 𝑓Δ𝑖−1

(𝑥, v) ∶= {1 if (𝑥, v) ∈ Δ𝑖−1,
0 otherwise.

(c) Measure the first register in the standard basis for output (𝑥, v) and update Δ𝑖 ∶= Δ𝑖−1 ∪{(𝑥, v)}.
3. Output Δℓ.

Figure 2: TheHash Value Guesser, given a successfulQCMA verifier for the code intersection subset size problem.

Let 𝐺 be the event that the witness 𝑤 sampled is a good witness for 𝐻 , and let 𝐸𝑖 be the event that the 𝑖’th
round of Guesser appends a tuple (𝑥, v) ∉ Δ𝑖−1 such that (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 .

Claim 6.5. ∀𝑖 ∈ [ℓ], Pr[𝐸𝑖|𝐸𝑖−1 ∧ … ∧ 𝐸1 ∧ 𝐺] ≥ 1
144𝑄(𝜆)2 .

Proof. Fix an index 1 ≤ 𝑖 ≤ ℓ. Observe that conditioned on 𝐸1 ∧ … ∧ 𝐸𝑖−1 occurring, this means that Δ𝑖−1
consists of 𝑖 − 1 distinct tuples {(𝑥𝑗, v𝑗)}𝑖−1

𝑗=1 such that (𝑥𝑗‖0𝑞−𝜆, v𝑗) ∈ 𝑅𝐶𝜆,𝐻 for all 1 ≤ 𝑗 ≤ 𝑖 − 1.
Since 𝒪Δ𝑖−1

= 𝒪[𝐻, Δ𝑖−1] corresponds to a NO instance (as |Δ𝑖−1| = 𝑖−1 < ℓ ≤ 2𝜆/3) while 𝒪[𝐻, {0, 1}𝜆 ×
Σ𝑞] corresponds to a YES instance, by the completeness and soundness of the QCMA algorithm 𝒜 and the fact
that the event 𝐺 implies we have a good witness, Theorem 4.8 implies that the query mass on the inputs where
the two oracles differ must be at least ((2/3 − 1/3)/4)2/𝑄 = 1/144𝑄.

As𝒪Δ𝑖−1
and𝒪[𝐻, {0, 1}𝜆×Σ𝑞] differ precisely on inputs (𝑥, v) ∉ Δ𝑖−1 where (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 , it follows

that measuring a random query of 𝒜 produces a good tuple (𝑥, v) with probability at least 1
𝑄 ⋅ 1

144𝑄 = 1
144𝑄2 .

Observing that Pr[𝐺] ≥ 2−𝑡(𝜆) as there is always at least one good witness for any 𝐻 , we conclude that

Pr[𝐸1 ∧ … ∧ 𝐸ℓ] ≥ Pr[𝐺] ⋅
ℓ

∏
𝑖=1

Pr[𝐸𝑖|𝐸𝑖−1 ∧ … ∧ 𝐸1 ∧ 𝐺] ≥ 2−𝑡(𝜆) ⋅ (1
144𝑄(𝜆)2)

ℓ
.

21

Separately, we can show the following upper bound on the success probability of Guesser. The bound follows
from the fact that Guesser is not making any queries to the oracle, and thus knows nothing about 𝐻 .

Lemma 6.6 (Guessing probability upper bound). For sufficiently large 𝜆, the following holds: fix any algorithm
Guesser which makes no oracle queries. Then, for all ℓ ≤ 2𝜆,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← Guesser(1ℓ)] ≤ (1 − 1

𝜆4)
𝜆5ℓ/2

.

Proof. Consider any output (𝑥1, v1, … , 𝑥ℓ, vℓ) of Guesser. First, observe that if (𝑥𝑖, v𝑖) are distinct and 𝐻(v𝑖) =
𝑥𝑖‖0𝑞−𝜆, then we must have distinct v𝑖 or else Guesser will fail. Since we require v𝑖 ∈ 𝐶𝜆 for all 𝑖 ∈ [ℓ], we now
consider the sets 𝑆𝑗 ∶= {𝜎 ∈ Σ ∣ ∃𝑖 ∈ [ℓ] ∶ (v𝑖)𝑗 = 𝜎} for all 𝑗 ∈ [𝑞].

By definition, for all 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑞], (v𝑖)𝑗 ∈ 𝑆𝑗, so if we think of {𝑆𝑗}𝑞
𝑗=1 as input lists, the output list for

the code 𝐶𝜆 must contain v𝑖 ∈ [ℓ] and thus |{v ∈ 𝐶𝜆 ∶ ∀𝑗 ∈ [𝑞], v𝑗 ∈ 𝑆𝑗}| ≥ ℓ.
Corollary 4.18 thus implies that 1

𝑞 ∑𝑗 |𝑆𝑗| ≥ ℓ/2 if 𝜆 is sufficiently large. In order for Guesser to succeed, it
must correctly guess the output of 𝐻 on all symbols in ⋃𝑞

𝑖=1 𝑆𝑖 which contain at least ∑𝑗 |𝑆𝑗| ≥ 𝑞ℓ
2 = 𝜆5ℓ/2

distinct points. Since we sample 𝐻 ← Bias𝑞,1/𝜆4,𝔽𝑠𝑞
, this occurs with probability at most (1 − 1

𝜆4)𝜆5ℓ/2.

We can combine the upper bound and lower bound to conclude that any QCMA algorithm 𝒜 for the code
intersection subset size problem must misclassify some YES or NO instance.

Lemma 6.7. For all constants 𝑎 > 0 and functions 𝑄(𝜆), 𝑡(𝜆) that satisfy 𝑄(𝜆) ≤ 𝑎𝜆𝑎, 𝑡(𝜆) ≤ 𝑎𝜆𝑎 for sufficiently
large 𝜆. Then for sufficiently large 𝜆, for all quantum query algorithms 𝒜 which take a classical witness of length 𝑡(𝜆) and
make 𝑄(𝜆) queries to the oracle 𝑂[𝐻, 𝐸] of size 𝜆, there exists an oracle 𝑂[𝐻∗, 𝐸∗] of size 𝜆 such that 𝐻∗ ∈ Good and

1. either 𝐸∗ = {0, 1}𝜆 × Σ𝑞 , but for all witnesses 𝑤 of length 𝑡(𝜆),

Pr[𝒜𝑂[𝐻∗,𝐸∗](𝑤) = 1] < 2
3 ,

2. or 𝐸∗ ⊆ 𝐹 ∗ × Σ𝑞 ⊆ {0, 1}𝜆 × Σ𝑞 where |𝐹 ∗| ≤ 2𝜆/3, but there exists a witness 𝑤 of length 𝑡(𝜆) such that

Pr[𝒜𝑂[𝐻∗,𝐸∗](𝑤) = 1] > 1
3 .

Proof. Suppose for the sake of contradiction that 𝒜 properly classifies all YES and NO instances. Setting ℓ = 𝑡 ≪
2𝜆/3, we can apply Corollary 5.24 and Lemma 6.4, yielding a guesser Guesser where

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}𝑡
𝑖=1 ← Guesser(1𝑡)]

≥ Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}𝑡
𝑖=1 ← Guesser(1𝑡)∣𝐻 ∈ Good] ⋅ Pr

𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[𝐻 ∈ Good]

≥ 2−𝑡(𝜆) ⋅ (1
144𝑄(𝜆)2)

𝑡(𝜆)
⋅ (1 − 2−𝜆) ≥ (1

576𝑄(𝜆)2)
𝑡(𝜆)

.

But this is impossible as Lemma 6.6 implies that the success probability of Guesser is at most

(1 − 1
𝜆4)

𝜆5𝑡(𝜆)/2
≤ (𝑒−𝜆/2)𝑡(𝜆) ≪ (1

576𝑄(𝜆)2)
𝑡(𝜆)

.

A straightforward diagonalization argument thus gives us our desired separation (see Section §B for details).

Theorem 6.8. There exists a classical oracle 𝒪 ∶ {0, 1}∗ → {0, 1} such that QMA𝒪 ∩ AM𝒪 ⊈ QCMA𝒪.7
7We note that this separation can be easily strengthened to QMA𝒪 ∩ SBP𝒪 ⊈ QCMA𝒪, as with most set-approximation-flavored oracles.

22

7 Separating BQP/qpoly from BQP/poly
Webegin by proving themain technical result of this section, which is a search-like separation betweenBQP/qpoly
and BQP/poly. In particular, we prove that given as input an oracle 𝑂[𝐻, 𝐸] for 𝐸 = {0, 1}𝜆 ×Σ𝑞 and 𝐻 sampled
from Bias𝑞,1/𝜆4,𝔽𝑠𝑞

, and 𝑥 ∈ {0, 1}𝜆, the problem of finding a codeword v whose hash values correspond to 𝑥 is
in BQP/qpoly (where the advice is allowed to depend on the oracle, but not on 𝑥) but not BQP/poly.
Lemma 7.1. For all security parameters 𝜆 ∈ ℕ, let 𝜆5 < 𝑞 < 2𝜆5 be a prime, 𝑘 = 𝜆3, and 𝑠 = 𝜆, and define the code
𝐶𝜆 = Mult𝑠,𝔽𝑞,𝑘. In addition, for all 𝜆, define the set 𝐸𝜆 ∶= {0, 1}𝜆 × Σ𝑞 , where Σ = 𝔽𝑠

𝑞 . Then the following hold:

1. There is an polynomial-time uniform quantum query algorithm 𝒜, such that for all oracles 𝑂 there exists a family
of poly(𝜆)-qubit quantum advice states (depending only on the oracle) {|𝑧𝑂⟩}𝑂 such that

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[∀𝑥 ∈ {0, 1}𝜆,Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← 𝒜𝑂[𝐻,𝐸𝜆](𝑥, |𝑧𝑂⟩)] ≥ 1−negl(𝜆)] ≥ 1−negl(𝜆).

2. For all unbounded-time quantum algorithms ℬ that make 𝑄(𝜆) = poly(𝜆) oracle queries to 𝑂, and all families of
𝑡(𝜆) = poly(𝜆)-bit classical advice strings (depending only on the oracle) {𝑧𝑂}𝑂,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞 ,𝑥←{0,1}𝜆

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← ℬ𝑂[𝐻,𝐸𝜆](𝑥, 𝑧𝑂)] ≤ negl(𝜆).

Proof. Throughout this proof we will assume that 𝜆 is sufficiently large and argue with respect to asymptotics.
To prove Item 1, we simply set the advice as |𝑧𝑂⟩ = |adv𝐻⟩ from Corollary 5.24, and the algorithm just runs the
algorithm in Corollary 5.24, which implies that

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[∀𝑥 ∈ {0, 1}𝜆,Pr[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← 𝒜(|𝑧𝑂⟩ , 𝑥)] ≥ 1 − 2−𝜆] ≥ 1 − 2−𝜆.

We now move to proving Item 2. Suppose for the sake of contradiction that there exists a polynomial 𝑝(𝜆),
an adversary ℬ which makes 𝑄(𝜆) = poly(𝜆) oracle queries, and a family of 𝑡(𝜆) = poly(𝜆)-bit classical advice
{𝑧𝑂}𝑂 such that for infinitely many 𝜆,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞 ,𝑥←{0,1}𝜆

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← ℬ𝑂[𝐻,𝐸𝜆](𝑧𝑂, 𝑥)] ≥ 1
𝑝(𝜆) .

Our goal will be to arrive at a contradiction by showing that this algorithm ℬ implies a (too good) sampler for
𝑅𝐶𝜆,𝐻 that works for infinitely many choices of 𝜆. Consider the 𝑄-query algorithm 𝒜𝑂[𝐻,𝐸𝜆]

1 (𝑧𝑂) which samples
a random 𝑥 ← {0, 1}𝜆, runs ℬ𝑂[𝐻,𝐸𝜆](𝑧𝑂, 𝑥) to get v, and outputs (𝑥, v). By the definition of ℬ, we have

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ (𝑥, v) ← 𝒜𝑂[𝐻,𝐸𝜆]
1 (𝑧𝑂)] ≥ 1

𝑝(𝜆) , (1)

for infinitely many 𝜆. We denote with Λ the set of all 𝜆 for which this bound holds. At a very high level, we will
first show that for all but finitely many 𝜆 ∈ Λ, 𝒜1’s queries are concentrated on very few points. Once we know
that queries to 𝒜1 are concentrated on a couple points, replacing the real oracle with an oracle that only contains
those few points will give rise to a sampler for many more points than are contained within the oracle itself.

For each function 𝐻 and set 𝑆 ⊆ {0, 1}𝜆 × Σ𝑞, we define 𝑀𝐻,𝑆 as the query mass that 𝒜1 places on points
which differ between 𝑂[𝐻, 𝑆] and 𝑂[𝐻, 𝐸]. Let SmallSet𝐻 be the event that there exists a list 𝐿𝐻 ⊆ {0, 1}𝜆 × Σ𝑞

such that |𝐿𝐻 | ≤ 2𝜆/2 and 𝑀𝐻,𝐿𝐻
≤ 1

256𝑝2(𝜆)𝑄(𝜆) .

Claim 7.2. Whenever SmallSet𝐻 does not occur, for all ℓ ≤ 2𝜆/2, there is an algorithm, Guesser, which makes no queries
to an oracle, and outputs a list of ℓ distinct points from 𝑅𝐶𝜆,𝐻 with probability at least 2−𝑡 ⋅ (1

256𝑝2(𝜆)𝑄2(𝜆))
ℓ.

23

Proof. The algorithm Guesser is identical to the algorithm in Figure 2, except starting from 𝒜1 instead of a QCMA
verifier for the code intersection subset size problem.

The proof follows similarly as well. Let 𝑋𝑖 be the event that the 𝑖’th round of Guesser(1ℓ) outputs a tuple
(𝑥, v) ∉ Δ𝑖−1 such that (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 and 𝐺 be the event that the advice is guessed correctly. By assump-
tion, and because |Δ𝑖−1| ≤ 2𝜆/2, we have that 𝒜1 places at least 1

256𝑝2(𝜆)𝑄(𝜆) query mass on points which differ
between 𝑂[𝐻, Δ𝑖−1] and 𝑂[𝐻, 𝐸𝜆]. Therefore, we have that Pr[𝑋𝑖|𝑋1 ∧ … ∧ 𝑋𝑖−1 ∧ 𝐺] ≥ 1

256𝑝2(𝜆)𝑄2(𝜆) .
Applying the chain rule, together with the fact that Pr[𝐺] ≥ 2−𝑡(𝜆), we get that the probability of sampling ℓ

distinct points from 𝑅𝐶𝜆,𝐻 is at least

Pr[𝑋1 ∧ … ∧ 𝑋ℓ ∧ 𝐺] ≥ 2−𝑡(𝜆) ⋅ (1
256𝑝2(𝜆)𝑄2(𝜆))

ℓ
.

As a corollary, we have that for all but finitely many 𝜆 ∈ Λ, SmallSet𝐻 must occur with high probability.
Claim 7.3. There are only finitely many 𝜆 ∈ Λ such that Pr𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[SmallSet𝐻] < 1 − 1
4𝑝(𝜆) .

Proof. Assume for the sake of contradiction that there are infinitely many 𝜆 ∈ Λ such that Pr[SmallSet𝐻] <
1 − 1

4𝑝(𝜆) . Whenever SmallSet𝐻 does not occur, the previous claim gives us a sampler. Thus, when 𝐻 is sampled
from Bias𝑞,1/𝜆4,𝔽𝑠𝑞

, the probability of the sampler outputting ℓ distinct points from 𝑅𝐶𝜆,𝐻 is at least

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← Guesser(1ℓ)] ≥ 1

4𝑝 ⋅ 2−𝑡 ⋅ (1
256𝑝2(𝜆)𝑄2(𝜆))

ℓ
.

Taking ℓ = max{𝑡, 𝜆} ≤ 2𝜆/2 ≤ 2𝜆 gives a sampling success probability of

1
4𝑝(𝜆) ⋅ (1

512𝑝(𝜆)2𝑄(𝜆)2)
ℓ

≥ (1
2048𝑝(𝜆)3𝑄(𝜆)2)

ℓ
,

which is a contradiction since Lemma 6.6 implies this success probability should be at most

(𝑒−𝜆/2)ℓ ≪ (1
2048𝑝(𝜆)3𝑄(𝜆)2)

ℓ
.

Now we know that SmallSet𝐻 occurs with high probability for infinitely many 𝜆 ∈ Λ. For all 𝐻 for which
SmallSet𝐻 occurs, we denote 𝐿∗

𝐻 to refer to any arbitrary set of size at most 2𝜆/2 such that 𝑀𝐻,𝐿∗
𝐻

≤ 1
256𝑝2(𝜆)𝑄(𝜆) ;

if SmallSet𝐻 does not occur, then we define 𝐿∗
𝐻 ∶= ∅. For each function 𝐻 , define the punctured oracle

𝑂∗
𝐻(𝑥, v) = {1 if (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∧ (𝑥, v) ∈ 𝐿∗

𝐻 ,
0 otherwise.

Then we have that, conditioned on 𝜆 being such that Pr𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞
[SmallSet𝐻] ≥ 1 − 1

4𝑝(𝜆) ,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ (𝑥, v) ← 𝒜𝑂∗
𝐻

1 (𝑧𝑂)|SmallSet𝐻]

≥ Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ (𝑥, v) ← 𝒜𝑂[𝐻,𝐸]
1 (𝑧𝑂)|SmallSet𝐻] − 1

4𝑝(𝜆)

≥ Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[(𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ (𝑥, v) ← 𝒜𝑂[𝐻,𝐸]
1 (𝑧𝑂) ∧ SmallSet𝐻] − 1

4𝑝(𝜆)

≥ 1
𝑝(𝜆) − 1

2𝑝(𝜆) = 1
2𝑝(𝜆) .

In the first line, we use the hybrid lemma (Theorem 4.8) combined with our bound on the query mass of 𝒜1
outside of 𝐿𝐻 . In the second line, we use the definition of conditional probability, together with the fact that

24

Pr[SmallSet𝐻] ≤ 1. We conclude by using a union bound, together with the fact that Pr[SmallSet𝐻] ≥ 1 − 1
4𝑝(𝜆)

and the fact that the probability of 𝒜1 sampling a point in 𝑅𝐶𝜆,𝐻 is at least 1
𝑝(𝜆) by assumption.

To arrive at a contradiction we construct yet another sampler. By the definition of 𝒜1, running it produces a
uniformly random 𝑥 ∈ {0, 1}𝜆, so there exists an algorithm 𝒜2 which, on input 1ℓ, runs 𝒜1 ℓ times and satisfies

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← 𝒜𝑂∗

𝐻
2 (𝑧𝑂, 1ℓ)]

≥ Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[SmallSet𝐻] ⋅
ℓ

∏
𝑖=1

(1
2𝑝(𝜆) − 𝑖 − 1

2𝜆) .

Here we applied the definition of conditional probability and used the fact that since the 𝑥𝑖’s are uniformly
random, the probability that 𝑥𝑖 ∈ ⋃𝑖−1

𝑗=1{𝑥𝑗} is at most 𝑖−1
2𝜆 .

As 𝑂∗
𝐻 has at most 2𝜆/2 nonzero points, we can hardwire 2𝜆/2 ⋅ (𝜆 + log |Σ|𝑞) ≤ 22𝜆/3 bits of advice and

simulate 𝑂∗
𝐻 . By guessing this extra advice along with 𝑧𝑂, we get an algorithm 𝒜3 such that for ℓ = 23𝜆/4,

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← 𝒜3(1ℓ)]

≥ 2−(𝑡(𝜆)+22𝜆/3) ⋅ (1 − 1
4𝑝(𝜆)) ⋅

ℓ
∏
𝑖=1

(1
2𝑝(𝜆) − 𝑖 − 1

2𝜆)

≥ 2−ℓ ⋅
ℓ

∏
𝑖=1

(1
2𝑝(𝜆) − ℓ

2𝜆) ≥ 2−ℓ ⋅ (1
3𝑝(𝜆))

ℓ
= (1

6𝑝(𝜆))
ℓ

.

Applying Lemma 6.6 for ℓ = 23𝜆/4 ≤ 2𝜆, we have a contradicting upper bound on the success probability of

Pr
𝐻←Bias𝑞,1/𝜆4,𝔽𝑠𝑞

[
∀𝑖 ≠ 𝑗, (𝑥𝑖, v𝑖) ≠ (𝑥𝑗, v𝑗)
∧ (𝑥𝑖‖0𝑞−𝜆, v𝑖) ∈ 𝑅𝐶𝜆,𝐻

∶ {(𝑥𝑖, v𝑖)}ℓ
𝑖=1 ← 𝒜3(1ℓ)] ≤ (1 − 1

𝜆4)
𝜆5ℓ/2

≤ 𝑒−𝜆ℓ/2 ≪ (1
6𝑝(𝜆))

ℓ
.

Having shown that there is a search problem outside of BQP/poly, we now apply Lemma 4.21. This was
essentially established in [LLPY23], but we make minor modifications to deal with quantum queries.
Lemma 7.4. There is a family of distributions {𝒟𝜆}𝜆∈ℕ, where 𝒟𝜆 is supported on tuples (𝐺, 𝒪′) of functions 𝐺 ∶
{0, 1}𝜆 → {0, 1} and 𝒪′ ∶ {0, 1}poly(𝜆) → {0, 1}poly(𝜆), satisfying the following:

1. There is an polynomial-time uniform quantum algorithm 𝒜 which makes one query to 𝒪′ such that for all 𝒪′ there
exists a family of poly(𝜆)-qubit quantum advice {|𝑧𝒪′⟩}𝒪′ such that

Pr
(𝐺,𝒪′)←𝒟𝜆

[∀𝑥 ∈ {0, 1}𝜆,Pr[𝒜𝒪′(|𝑧𝒪′⟩ , 𝑥) = 𝐺(𝑥)] ≥ 1 − negl(𝜆)] ≥ 1 − negl(𝜆) .

2. For all quantum query algorithms algorithm ℬ that makes poly(𝜆) queries to 𝒪′ and receiving a family of poly(𝜆)-
bit classical advice {𝑧𝒪′}𝒪′ depending only on 𝒪′,

Pr
(𝐺,𝒪′)←𝒟𝜆,𝑥←{0,1}𝜆

[ℬ𝒪′(𝑧𝒪′ , 𝑥) = 𝐺(𝑥)] ≤ 3
5 ,

for all sufficiently large 𝜆.
Proof. Define 𝒟𝜆 as follows: first, sample a random function 𝐺 ∶ {0, 1}𝜆 → {0, 1} and 𝐻 ← Bias𝑞,1/𝜆4,𝔽𝑠𝑞

and let

𝒪′(𝑥, v) ∶= {𝐺(𝑥) if (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 ,
⊥ otherwise.

25

We begin by showing easiness with quantum advice. Let (𝒜′, {|𝑧′
𝐻⟩}𝐻) be the algorithm and advice family

from Item 1 of Lemma 7.1. We now construct an algorithm 𝒜 and family of mixed state advice {𝜌𝒪′}𝒪′).8 We
describe a randomized procedure to set 𝜌𝒪′ given an oracle 𝒪′, but in reality, we will set 𝜌𝒪′ to be the mixed
state corresponding to the mixture over outputs of this procedure. Sample (𝐺, 𝐻) from the distribution of 𝒟𝜆
conditioned on 𝒪′; by construction, the joint distribution of (𝐺, 𝐻, 𝒪′) sampled in this procedure is identical to
𝒟𝜆. We then set our advice to be 𝜌𝒪′ = |𝑧′

𝐻⟩. The algorithm 𝒜 on input 𝑥 will run v ← 𝒜′(𝜌𝒪′ , 𝑥), query (𝑥, v)
to 𝒪′, and output whatever 𝒪′ returns. Item 1 of Lemma 7.1 then implies that 𝒜 is efficient/uniform and that

Pr
(𝐺,𝒪′)←𝒟𝜆

[∀𝑥 ∈ {0, 1}𝜆,Pr[𝒜𝒪′(𝜌𝒪′ , 𝑥) = 𝐺(𝑥)] ≥ 1 − negl(𝜆)] ≥ 1 − negl(𝜆).

Now suppose for the sake of contradiction that there was some algorithm ℬ which made 𝑄(𝜆) = poly(𝜆)
queries and had 𝑡(𝜆) = poly(𝜆)-bit classical advice {𝑧𝒪′}𝒪′ such that for infinitely many 𝜆,

Pr
(𝐺,𝒪′)←𝒟𝜆
𝑥←{0,1}𝜆

[ℬ𝒪′(𝑧𝒪′ , 𝑥) = 𝐺(𝑥)] > 3
5 .

We know that 𝒪′ returns 𝐺(𝑥) only if the query (𝑥, v) ∈ 𝑅𝐶𝜆,𝐻 . Thus, by a direct reduction to Lemma 4.21, for
a 1

4000𝑄(𝜆)2 fraction of 𝑥 ∈ {0, 1}𝜆, measuring a random query of ℬ to a randomly sampled oracle 𝒪′ ← 𝒟𝜆 will
produce (𝑥, v) ∈ 𝑅𝐶𝜆,𝐻 with probability at least 1

3200𝑄(𝜆)2 .
But now observe that 𝒪′ can be simulated by querying 𝐺 and 𝒪𝐻 ∶= 𝑂[𝐻, {0, 1}𝜆 ×Σ𝑞]. Thus, for each func-

tion 𝐺, we define the following 𝑄-query algorithm ℬ′[𝐺] and classical advice {𝑧′
𝒪[𝐺]}𝒪. First, construct 𝒪′ from

(𝐺, 𝒪) (since 𝒪 uniquely determines 𝐻) before setting 𝑧′
𝒪[𝐺] ∶= 𝑧𝒪′ . ℬ′[𝐺]𝒪(𝑧′

𝒪[𝐺], 𝑥) will run ℬ𝒪′(𝑧′
𝒪[𝐺], 𝑥)

where ℬ′ will simulate the oracle 𝒪′ using its own oracle 𝒪 and the hardwired oracle 𝐺 and measure a uniformly
chosen query of ℬ. As noted earlier, this means that

Pr
𝐺,𝐻,𝑥

[(𝑥, v) ∈ 𝑅𝐶𝜆,𝐻 ∶ v ← ℬ′[𝐺]𝒪(𝑧′
𝒪[𝐺], 𝑥)] ≥ 1

3200 ⋅ 4000 ⋅ 𝑄(𝜆)4 = 1
poly(𝜆) .

By taking 𝐺∗ which maximizes the above probability,9 (ℬ′[𝐺∗], {𝑧′
𝒪[𝐺∗]}𝒪) breaks Item 2 of Lemma 7.1.

A simple diagonalization argument gives us our desired separation (see Section §B for details).

Theorem 7.5. There is a classical oracle 𝒪 such that BQP𝒪/qpoly ∩ NP𝒪 ∩ coNP𝒪 ⊊ BQP𝒪/poly.10

Acknowledgments. We thank Anand Natarajan, Scott Aaronson, Joe Carolan, Ryan Williams, Rohan Goyal,
Venkatesan Guruswami, Mary Wootters and Rachel Zhang for patiently answering our many questions. JB is
supported by Henry Yuen’s AFOSR award FA9550-23-1-0363. VV gratefully acknowledges support from a
Simons Investigator Award and a Ford Foundation Chair.

References
[Aar07] Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 463(2088):3089–3114, 2007.
[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Con-

ference on Computational Complexity, pages 229–242. IEEE, 2009.
8This is without loss of generality as a mixed state is a distribution over pure states and so there is always a pure state advice that is at least

as good as the mixed state advice.
9As noted in [LLPY23], finding 𝐺∗ does not actually require access to the specific 𝐻 since ℬ′ can find 𝐺∗ by itself by using its unbounded

computational power to enumerate over all possible 𝐺 and 𝒪𝐻 .
10It is not hard to extend this separation to show that YQP𝒪 ∩ NP𝒪 ∩ coNP𝒪 ⊊ BQP𝒪/poly, where YQP is the class of problems that can

be decided by a BQP machine with untrusted quantum advice [Aar07, AD14].

26

[Aar10] Scott Aaronson. Bqp and the polynomial hierarchy. In Proceedings of the Forty-Second ACM Sym-
posium on Theory of Computing, STOC ’10, page 141–150, New York, NY, USA, 2010. Association
for Computing Machinery.

[AD14] Scott Aaronson and Andrew Drucker. A full characterization of quantum advice. SIAM Journal on
Computing, 43(3):1131–1183, 2014.

[AK07] Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Twenty-Second
Annual IEEE Conference on Computational Complexity (CCC’07), pages 115–128. IEEE, 2007.

[AN02] Dorit Aharonov and Tomer Naveh. Quantum np-a survey. arXiv preprint quant-ph/0210077, 2002.
[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses

of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.
[BDK24] Shalev Ben-David and Srijita Kundu. Oracle separation of qma and qcma with bounded adaptivity.

arXiv preprint arXiv:2402.00298, 2024.
[BHNZ25] John Bostanci, Jonas Haferkamp, Chinmay Nirkhe, and Mark Zhandry. Separating qma from qcma

with a classical oracle. arXiv preprint arXiv:2511.09551, 2025.
[Bla24] Ian F Blake. Essays on Coding Theory. Cambridge University Press, 2024.

[BNZ25] John Bostanci, Barak Nehoran, and Mark Zhandry. A general quantum duality for representations
of groups with applications to quantum money, lightning, and fire. In Proceedings of the 57th Annual
ACM Symposium on Theory of Computing, pages 201–212, 2025.

[Bor09] Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 27(1):247–271, 1909.

[BV93] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 11–20, 1993.

[Can17] Francesco Cantelli. Sulla probabilista come limita della frequencza. Rend. Accad. Lincei, 26:39, 1917.
[CGLQ20] Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space tradeoffs

for function inversion. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 673–684. IEEE, 2020.

[CW02] Cleve and Watrous. Sharp quantum versus classical query complexity separations. Algorithmica,
34(4):449–461, 2002.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method of
multiplicities, with applications to kakeya sets andmergers. SIAM Journal on Computing, 42(6):2305–
2328, 2013.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor. Quantum
money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 276–289, 2012.

[FK15] Bill Fefferman and Shelby Kimmel. Quantum vs classical proofs and subset verification. arXiv preprint
arXiv:1510.06750, 2015.

[GGJL25] Mika Göös, Tom Gur, Siddhartha Jain, and Jiawei Li. Quantum communication advantage in tfnp.
In Proceedings of the 57th Annual ACM Symposium on Theory of Computing, pages 1465–1475, 2025.

[GS86] S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, page 59–68,
New York, NY, USA, 1986. Association for Computing Machinery.

27

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and ran-
domness extractors from parvaresh–vardy codes. Journal of the ACM (JACM), 56(4):1–34, 2009.

[Kop15] Swastik Kopparty. Some remarks on multiplicity codes. arXiv preprint arXiv:1505.07547, 2015.
[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time

decoding. Journal of the ACM (JACM), 61(5):1–20, 2014.
[KTS22] Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022), pages 12–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022.

[Liu23] Qipeng Liu. Non-uniformity and quantum advice in the quantum random oracle model. InAnnual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 117–143.
Springer, 2023.

[LLPY23] Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa. Classical vs quantum advice
and proofs under classically-accessible oracle. arXiv preprint arXiv:2303.04298, 2023.

[LMY25] Jiahui Liu, Saachi Mutreja, and Henry Yuen. Qma vs. qcma and pseudorandomness, 2025.

[LS25] Ray Li and Nikhil Shagrithaya. Near-optimal list-recovery of linear code families. arXiv preprint
arXiv:2502.13877, 2025.

[Lut11] Andrew Lutomirski. Component mixers and a hardness result for counterfeiting quantum money.
arXiv preprint arXiv:1107.0321, 2011.

[Nie01] Rasmus Refslund Nielsen. List decoding of linear block codes. Department of Mathematics, Technical
University of Denmark, 2001.

[NN24] Anand Natarajan and Chinmay Nirkhe. A distribution testing oracle separation between qma and
qcma. Quantum, 8:1377, 2024.

[NY04] Harumichi Nishimura and Tomoyuki Yamakami. Polynomial time quantum computation with
advice. Information Processing Letters, 90(4):195–204, 2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM), 56(6):1–40, 2009.

[RT97] M Yu Rosenbloom andMichael Anatol’evich Tsfasman. Codes for the m-metric. Problemy Peredachi
Informatsii, 33(1):55–63, 1997.

[RZVW24] Noga Ron-Zewi, S Venkitesh, and Mary Wootters. Efficient list-decoding of polynomial ideal
codes with optimal list size. arXiv preprint arXiv:2401.14517, 2024.

[vDHI06] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some hidden shift prob-
lems. SIAM Journal on Computing, 36(3):763–778, 2006.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December 30
1986. US Patent 4,633,470.

[YZ24] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. Journal
of the ACM, 71(3):1–50, 2024.

[Zha24] Mark Zhandry. Toward separating QMA from QCMA with a classical oracle. arXiv preprint
arXiv:2411.01718, 2024.

[Zha25] Mark Zhandry. Quantum money from abelian group actions. TheoretiCS, 4, 2025.

28

A Duals of Multiplicity Codes
For a field 𝔽𝑞, the multiplicity mult(𝑓, 𝛼) of a polynomial 𝑓 ∈ 𝔽𝑞[𝑋] at a point 𝛼 ∈ 𝔽𝑞 is the largest integer 𝑚 so
that 𝑓 (𝑖)(𝛼) = 0 for any non-negative integer 𝑖 < 𝑚. The multiplicity Schwartz-Zippel Lemma from [DKSS13]
says that a nonzero degree 𝑘 univariate polynomial can vanish on at most 𝑘 points, counting multiplicities.
Lemma A.1 ([DKSS13]). Let 𝑓 ∈ 𝔽𝑞[𝑋] be a nonzero polynomial of degree at most 𝑘. Then ∑𝛼∈𝔽𝑞

mult(𝑓, 𝛼) ≤ 𝑘.

Fact A.2 (Hasse derivatives, see [Bla24]). The following properties hold for the Hasse derivative:
1. For any polynomial 𝑓(𝑋) ∈ 𝔽𝑞[𝑋], integer 𝑖 ≥ 0, and point 𝛼 ∈ 𝔽𝑞 , 𝑓 (𝑖)(𝛼) is the coefficient of 𝑋𝑖 in 𝑓(𝑋 + 𝛼).

2. (Linearity) For any 𝑓, 𝑔 ∈ 𝔽𝑞[𝑥], 𝜆, 𝜇 ∈ 𝔽𝑞 , and 𝑖 ≥ 0, (𝜆 ⋅ 𝑓 + 𝜇 ⋅ 𝑔)(𝑖) = 𝜆 ⋅ 𝑓 (𝑖) + 𝜇 ⋅ 𝑔(𝑖).

3. (Product rule) For any 𝑓, 𝑔 ∈ 𝔽𝑞[𝑥] and 𝑖 ≥ 0, we have (𝑓 ⋅ 𝑔)(𝑖) = ∑𝑖
𝑘=0 𝑓 (𝑘) ⋅ 𝑔(𝑖−𝑘).

We first derive a natural analogue of Lagrange interpolation for the setting of Hasse derivatives.
Lemma A.3 (Hermite interpolation). Let 𝔽𝑞 be a field, 𝑠 ≥ 1 be a positive integer, and 𝛼1, … , 𝛼𝑛 be distinct points in
𝔽𝑞 . For 𝑖 ∈ [𝑛] and 0 ≤ 𝑗 ≤ 𝑠 − 1, define 𝜇𝑖(𝑋) ∶= ∏𝑖′≠𝑖(𝑋 − 𝛼𝑖′)𝑠 and 𝜂𝑖(𝑋) ∶= (𝜇𝑖(𝑋))−1 mod (𝑋 − 𝛼𝑖)𝑠.

Then, for all 𝑓(𝑋) ∈ (𝔽𝑞)<𝑠𝑛[𝑋], we can write 𝑓(𝑋) = ∑𝑛
𝑖=1 ∑𝑠−1

𝑗=0 𝐴𝑖,𝑗(𝑋)𝑓 (𝑗)(𝛼𝑖), where

𝐴𝑖,𝑗(𝑋) = 𝜇𝑖(𝑋)(𝑋 − 𝛼𝑖)𝑗
𝑠−1−𝑗
∑
𝑡=0

𝜂(𝑡)
𝑖 (𝛼𝑖)(𝑋 − 𝛼𝑖)𝑡.

Proof. We begin by showing that for any 𝑖, 𝑖′ ∈ [𝑛] and 0 ≤ 𝑗, 𝑗′ ≤ 𝑠 − 1, 𝐴(𝑗′)
𝑖,𝑗 (𝛼𝑖′) = 1 if (𝑖, 𝑗) = (𝑖′, 𝑗′) and

0 otherwise. First, if 𝑖′ ≠ 𝑖, then 𝐴𝑖,𝑗(𝑋 + 𝛼𝑖′) = 𝑋𝑠 ⋅ 𝐵𝑖,𝑗(𝑋) for some polynomial 𝐵𝑖,𝑗(𝑋) so 𝐴(𝑗′)
𝑖,𝑗 (𝛼𝑖′) = 0

for all 𝑗, 𝑗′. Similarly, since 𝐴𝑖,𝑗(𝑋 + 𝛼𝑖) = 𝑋𝑗 ⋅ 𝐶𝑖,𝑗(𝑋) for some polynomial 𝐶𝑖,𝑗(𝑋), 𝐴(𝑗′)
𝑖,𝑗 (𝛼𝑖) = 0 whenever

𝑖 = 𝑖′ and 𝑗′ < 𝑗. It thus remains to consider 𝑖 = 𝑖′ and 𝑗 ≤ 𝑗′. By the product rule, we know that

𝐴(𝑗′)
𝑖,𝑗 (𝛼𝑖) =

𝑗′

∑
𝑘=0

𝜇(𝑗′−𝑘)
𝑖 (𝛼𝑖) ⋅ [

𝑠−1−𝑗
∑
𝑡=0

𝜂(𝑡)
𝑖 (𝛼𝑖)(𝑋 − 𝛼𝑖)𝑗+𝑡]

(𝑘)

(𝛼𝑖) =
𝑗′

∑
𝑘=𝑗

𝜇(𝑗′−𝑘)
𝑖 (𝛼𝑖) ⋅ 𝜂(𝑘−𝑗)

𝑖 (𝛼𝑖)

=
𝑗′−𝑗
∑
ℓ=0

𝜇(𝑗′−𝑗−ℓ)
𝑖 (𝛼𝑖) ⋅ 𝜂(ℓ)

𝑖 (𝛼𝑖) = (𝜇𝑖 ⋅ 𝜂𝑖)(𝑗′−𝑗)(𝛼𝑖).

By construction, (𝜇𝑖 ⋅ 𝜂𝑖)(𝑋) = 1 + ℎ(𝑋) ⋅ (𝑋 − 𝛼𝑖)𝑠 for some polynomial ℎ(𝑋), so 𝜇𝑖(𝑋 + 𝛼𝑖) ⋅ 𝜂𝑖(𝑋 + 𝛼𝑖) =
1 + 𝑋𝑠 ⋅ ℎ(𝑋 + 𝛼𝑖). As 0 ≤ 𝑗′ − 𝑗 ≤ 𝑠 − 1, we conclude that (𝜇𝑖 ⋅ 𝜂𝑖)(𝑗′−𝑗)(𝛼𝑖) equals 1 if 𝑗′ = 𝑗 and 0 otherwise.

Now, let 𝑔(𝑋) = ∑𝑛
𝑖=1 ∑𝑠−1

𝑗=0 𝐴𝑖,𝑗(𝑋)𝑓 (𝑗)(𝛼𝑖). Note that since deg𝐴𝑖,𝑗, deg 𝑓 ≤ 𝑠𝑛 − 1, we know that
deg(𝑔 − 𝑓) ≤ 𝑠𝑛 − 1. But for any 𝑖′ ∈ [𝑛] and 0 ≤ 𝑗′ ≤ 𝑠 − 1, we have that

(𝑔 − 𝑓)(𝑗′)(𝛼𝑖′) = 𝑔(𝑗′)(𝛼𝑖′) − 𝑓 (𝑗′)(𝛼𝑖′) = [
𝑛

∑
𝑖=1

𝑠−1
∑
𝑗=0

𝐴(𝑗′)
𝑖,𝑗 (𝛼𝑖′)𝑓 (𝑗)(𝛼𝑖)] − 𝑓 (𝑗′)(𝛼𝑖′) = 𝑓 (𝑗′)(𝛼𝑖′) − 𝑓 (𝑗′)(𝛼𝑖′) = 0.

Thus, by the multiplicity Schwartz-Zippel Lemma (Lemma A.1), (𝑔 − 𝑓)(𝑋) = 0 and so 𝑓(𝑋) = 𝑔(𝑋).
Definition A.4 (Generalized multiplicity codes). For invertible matrices 𝑈1, … , 𝑈𝑛 ∈ 𝔽𝑠×𝑠

𝑞 , define the generalized
multiplicity (GM) code GM𝑠,𝔽𝑞

(𝑈1, … , 𝑈𝑛; 𝛼1, … , 𝛼𝑛; 𝑘) ∶= {(𝑈1 ⋅ 𝑐1, … , 𝑈𝑛 ⋅ 𝑐𝑛) ∶ 𝑐 ∈ Mult𝑠,𝔽𝑞
(𝛼1, … , 𝛼𝑛; 𝑘)}.

Note that GM codes have distance at least 𝑛 − 𝑘−1
𝑠 by Lemma A.1.

Theorem A.5 (Duality of GM codes). Let 𝔽𝑞 be a field, and 𝑠 ≥ 1 be a positive integer, and 𝛼1, … , 𝛼𝑛 be distinct
points in 𝔽𝑞 . Then there exist invertible matrices 𝑈1, … , 𝑈𝑛 ∈ 𝔽𝑠×𝑠

𝑞 , so that for any positive integer 𝑘 < 𝑠𝑛,

Mult𝑠,𝔽𝑞
(𝛼1, … , 𝛼𝑛; 𝑘) = GM𝑠,𝔽𝑞

(𝑈1, … , 𝑈𝑛; 𝛼1, … , 𝛼𝑛; 𝑠𝑛 − 𝑘)⟂.

29

Proof. Consider any pair of polynomials 𝑓(𝑋) ∈ (𝔽𝑞)<𝑘[𝑋] and 𝑔(𝑋) ∈ (𝔽𝑞)<𝑠𝑛−𝑘[𝑋]. Let ℎ(𝑋) ∶= 𝑓(𝑋) ⋅ 𝑔(𝑋),
and note that ℎ(𝑋) has degree at most 𝑠𝑛 − 2. By Lemma A.3, there exist polynomials 𝐴𝑖,𝑗(𝑋) such that

ℎ(𝑋) =
𝑛

∑
𝑖=1

𝑠−1
∑
𝑗=0

𝐴𝑖,𝑗(𝑋)ℎ(𝑗)(𝛼𝑖).

Letting 𝑎𝑖,𝑗 denote the coefficient of 𝑋𝑠𝑛−1 in 𝐴𝑖,𝑗(𝑋), we see that the coefficient of 𝑋𝑠𝑛−1 in ℎ(𝑋) is

𝑛
∑
𝑖=1

𝑠−1
∑
𝑗=0

𝑎𝑖,𝑗ℎ(𝑗)(𝛼𝑖) =
𝑛

∑
𝑖=1

𝑠−1
∑
𝑗=0

𝑎𝑖,𝑗

𝑗
∑
ℓ=0

𝑓 (ℓ)(𝛼𝑖)𝑔(𝑗−ℓ)(𝛼𝑖) = 0,

by the product rule and the fact that degℎ ≤ 𝑠𝑛 − 2. Consider the following anti-triangular matrices:

𝑈𝑖 =
⎡
⎢⎢
⎣

𝑎𝑖,0 𝑎𝑖,1 ⋯ 𝑎𝑖,𝑠−1
𝑎𝑖,1 ⋰ ⋰ 0

⋮ ⋰ 0 ⋮
𝑎𝑖,𝑠−1 0 ⋯ 0

⎤
⎥⎥
⎦

∈ 𝔽𝑠×𝑠
𝑞 .

If we define 𝑓𝑖 ∶= (𝑓 (0)(𝛼𝑖), … , 𝑓 (𝑠−1)(𝛼𝑖)) ∈ 𝔽𝑠
𝑞 and 𝑔𝑖 ∶= (𝑔(0)(𝛼𝑖), … , 𝑔(𝑠−1)(𝛼𝑖)) ∈ 𝔽𝑠

𝑞, we see that

𝑛
∑
𝑖=1

⟨𝑓𝑖, 𝑈𝑖 ⋅ 𝑔𝑖⟩ =
𝑛

∑
𝑖=1

𝑓𝑇
𝑖 ⋅ 𝑈𝑖 ⋅ 𝑔𝑖 =

𝑛
∑
𝑖=1

𝑠−1
∑
𝑗=0

𝑎𝑖,𝑗

𝑗
∑
ℓ=0

𝑓 (ℓ)(𝛼𝑖)𝑔(𝑗−ℓ)(𝛼𝑖) = 0.

We claim that 𝑈𝑖 are invertible. To see this, note that by Lemma A.3, for any 𝑖 ∈ [𝑛],

𝐴𝑖,𝑠−1(𝑋) = 𝜇𝑖(𝑋)(𝑋 − 𝛼𝑖)𝑠−1𝜂𝑖(𝛼𝑖) = 𝜂𝑖(𝛼𝑖)(𝑋 − 𝛼𝑖)𝑠−1 ∏
𝑖′≠𝑖

(𝑋 − 𝛼𝑖′)𝑠,

so 𝑎𝑖,𝑠−1 = 𝜂𝑖(𝛼𝑖). As 𝜇𝑖 ⋅ 𝜂𝑖 ≡ 1 mod (𝑋 − 𝛼𝑖)𝑠, 𝜇𝑖(𝛼𝑖) ⋅ 𝜂𝑖(𝛼𝑖) = 1 and thus 𝑎𝑖,𝑠−1 ≠ 0. Consequently,

det(𝑈𝑖) = 𝑎𝑠
𝑖,𝑠−1 ⋅ det(𝐽𝑠) = 𝑎𝑠

𝑖,𝑠−1 ⋅ (−1)𝑠(𝑠−1)/2 ≠ 0,

where 𝐽𝑠 is the 𝑠 × 𝑠 reversal/exchange matrix. Thus, we have shown that ∑𝑛
𝑖=1⟨Enc𝐶(𝑓)𝑖, Enc𝐶′(𝑔)𝑖⟩ = 0 for

all 𝑓 and 𝑔, where 𝐶 ∶= Mult𝑠,𝔽𝑞
(𝛼1, … , 𝛼𝑛; 𝑘) and 𝐶′ ∶= GM𝑠,𝔽𝑞

(𝑈1, … , 𝑈𝑛; 𝛼1, … , 𝛼𝑛; 𝑠𝑛 − 𝑘). We conclude
that 𝐶 = (𝐶′)⟂ as both 𝐶 and (𝐶′)⟂ are vector spaces of dimension 𝑘.
Corollary A.6 (Theorem 4.19). For all parameters 𝑠, 𝑞, and 𝑘 < 𝑠𝑞, (Mult𝑠,𝔽𝑞,𝑘)⟂ has distance at least 𝑘+1

𝑠 .

Proof. By Theorem A.5, dist((Mult𝑠,𝔽𝑞,𝑘)⟂) = dist(GM𝑠,𝔽𝑞
(𝑈1, … , 𝑈𝑞; 1, … , 𝑞; 𝑠𝑞 − 𝑘)) ≥ 𝑞 − 𝑠𝑞−𝑘−1

𝑠 = 𝑘+1
𝑠 .

B Diagonalization Arguments
Proof of Theorem 6.8. The proof is nearly identical to that of [BHNZ25], but we include it for completeness. Let
𝒪 ∶ {0, 1}∗ → {0, 1} be an oracle and let 𝒪𝜆 be the restriction to 𝜆7-bit inputs, where the lower threshold is
𝜆0 (per Remark 6.2). We define the unary (promise) language ℒ𝒪 so that 1𝜆 ∈ ℒ𝒪 precisely when 𝒪𝜆 is a YES
instance and 1𝜆 ∉ ℒ𝒪 precisely when 𝒪𝜆 is a NO instance.

We consider only oracles 𝒪 such that each restriction to size 𝜆7-bit inputs encodes either a YES or NO
instance, and so the containment ℒ𝒪 ∈ QMA𝒪 follows from Lemma 6.3 (as we can hardcode the values of ℒ𝒪

on all inputs of length at most 𝜆7
0). Showing that ℒ𝒪 ∈ AM𝒪 for all 𝒪 is simple: Arthur samples 𝑥 ← {0, 1}𝜆

and Merlin responds with any v ∈ Σ𝑞 such that (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 (which always exists as 𝐻 ∈ Good). Arthur
accepts iff 𝒪(𝑥, v) = 1. Completeness and soundness follow essentially immediately.

Nowwe prove the lower bound forQCMAmachines. Let𝑀1, 𝑀2, … be an enumeration of all possible Turing
machines. Identify any surjective function 𝜄 ∶ ℕ ↠ ℕ2 and define functions 𝑗, 𝑎 ∶ ℕ → 𝒩 by (𝑗(𝜅), 𝑎(𝜅)) = 𝜄(𝜅).

30

Define 𝐹 ∶ ℕ → ℕ so that 𝐹(𝑎) is the minimum value such that for all 𝜆 ≥ 𝐹(𝑎), any 𝑄(𝜆) ≤ 𝑎𝜆𝑎 query algorithm
with 𝑡(𝜆) ≤ 𝑎𝜆𝑎-length classical witness must misclassify some 𝒪𝜆. By Lemma 6.7, for every integer 𝑎, 𝐹(𝑎) is
well-defined. We identify integers 𝑛1, 𝑛2, … where the oracles will be defined to be nonzero. Define integers
𝑛1 ∶= 1 + 𝐹(𝑎(1)), 𝑛𝜅 ∶= 1 + max{𝐹(𝑎(𝜅)), 𝑎(𝜅 − 1)(𝑛𝜅−1)𝑎(𝜅−1)}. For any 𝑛 ∈ ℕ ∖ {𝑛1, 𝑛2, …}, let 𝒪 equal 0
everywhere. For these input lengths, 𝒪𝑛 is trivially a NO instance.

For each 𝜅 ∈ ℕ, run 𝑀𝑗(𝜅) on input 1𝑛𝜅 for 𝑎(𝜅)𝑛𝑎(𝜅)
𝜅 steps and interpret its output as a quantum query

circuit 𝒜𝑛𝜅
which accepts a classical witness. For every query that 𝒜𝑛𝜅

makes of length < 𝑛𝜅, use the previously
generated definitions of the oracle 𝒪 to hardcode these answers. For queries 𝒜𝑛𝜅

makes of length > 𝑛𝜅, replace
the oracle gates with identity circuits. The resulting circuit will be ℬ𝑛𝜅

, which only makes queries of length 𝑛𝜅.
This new algorithm ℬ𝑛𝜅

can be used to derive an oracle 𝒪𝑛𝜅
by applying Lemma 6.7.

It remains to prove that no QCMA𝒪 algorithm exists. Assume, for contradiction, that there exists a P-uniform
family of oracle circuits {𝒜𝜆} that solves the code intersection problem with witnesses of length 𝑡(𝜆) = poly(𝜆)
and 𝑄(𝜆) = poly(𝜆) queries. Then, {𝒜𝜆} appears in the Turing machine enumeration as some 𝑀𝑗∗ and there
exists some 𝑎∗ such that 𝑡(𝜆), 𝑄(𝜆) ≤ 𝑎∗𝜆𝑎∗ . As 𝜄 is a surjection, there exists a 𝜅∗ such that 𝜄(𝜅∗) = (𝑗∗, 𝑎∗). Let
𝒜𝑛𝜅∗ be the quantum circuit for inputs of length 𝑛𝜅∗ . Since the oracle is defined as being 0 for inputs∉ {𝑛1, 𝑛2, …}
and 𝑛𝜅∗+1 > 𝑎∗𝑛𝑎∗

𝜅∗ , each query gate for inputs of length > 𝑛𝜅∗ is an identity gate. Thus the circuit ℬ𝑛𝜅∗ has the
exact same output as 𝒜𝑛𝜅∗ on inputs of size 𝑛𝜅∗ . However, using Lemma 6.7, we constructed an oracle 𝒪𝑛𝜅∗ that
ℬ𝑛𝜅∗ will misclassify. Therefore, 𝒜𝑛𝜅∗ will answer incorrectly on input 1𝑛𝜅∗ , completing the proof.

Proof of Theorem 7.5. Our proof will closely follow [LLPY23]. Suppose that for each 𝜆 we generate (𝐺𝜆, 𝒪′
𝜆) ←

𝒟𝜆 and define a language ℒ𝒪′ ∶= ⨆𝜆∈ℕ 𝐺−1
𝜆 (1) and an oracle 𝒪′ that returns 𝒪′

|𝑥|(𝑥) on a query 𝑥 ∈ {0, 1}∗. It
suffices to show that ℒ𝒪′ ∈ BQP𝒪′/qpoly ∩ NP𝒪′ ∩ coNP𝒪′

and ℒ𝒪′ ∉ BQP𝒪′/poly with probability 1.
To see that ℒ𝒪′ ∈ BQP𝒪′/qpoly with probability 1, observe that Item 1 of Lemma 7.4 implies that there is a

BQP machine 𝒜𝒪′ with polynomial-size quantum advice that decides ℒ𝒪′ on all 𝑥 of length 𝜆 with probability at
least 1− 1

𝜆2 for sufficiently large 𝜆. As ∑∞
𝜆=1

1
𝜆2 = 𝜋2

6 < ∞, the Borel–Cantelli lemma (Lemma 4.10) implies that
𝒜𝒪′ decides ℒ𝒪′ for all but finitely many 𝜆 with probability 1. By hard-coding all 𝑥’s where 𝒜 and ℒ disagree,
𝒜 can be modified into a BQP/qpoly machine 𝒜′𝒪′ that decides ℒ𝒪′ on all 𝑥 ∈ {0, 1}∗ with probability 1.

In addition, for any 𝑥 ∈ {0, 1}𝜆, we can give any v where (𝑥‖0𝑞−𝜆, v) ∈ 𝑅𝐶𝜆,𝐻 to certify 𝐺(𝑥). Thus, by a
Chernoff/union bound, we know that with probability 1 − negl(𝜆) over 𝒟𝜆, there exists an NP/coNP certificate
for all 𝑥 ∈ {0, 1}𝜆. We conclude via an identical argument that ℒ𝒪′ ∈ NP𝒪′ ∩ coNP𝒪′

with probability 1.
For a BQP machine ℬ that takes poly(𝜆)-bit classical advice, we define 𝑆ℬ(𝜆) to be the event over the choice

of (𝐺, 𝒪′) that there is a poly(𝜆)-bit classical advice family {𝑧𝒪′}𝒪′ such that

Pr[∀𝑥 ∈ {0, 1}𝜆, ℬ𝒪′(𝑧𝒪′ , 𝑥) = 𝐺(𝑥)] ≥ 2
3 .

By Item 2 of Lemma 7.4, there exists 𝜆0 ∈ ℕ such that for all BQP machines ℬ, Pr𝒟𝜆
[𝑆ℬ(𝜆)] ≤ 9

10 for all 𝜆 ≥ 𝜆0.
We will consider a sequence of input lengths 𝜆1, 𝜆2, … defined by 𝜆𝑖 ∶= 𝑇 (𝜆𝑖−1) + 1, where 𝑇 (𝜆) is the

running time of ℬ on input of length 𝜆. This means that when ℬ’s input length is 𝜆𝑖−1, it cannot query the
oracle on input lengths ≥ 𝜆𝑖, so it must be the case that

Pr[𝑆ℬ(𝜆𝑖)|𝑆ℬ(𝜆0) ∧ … ∧ 𝑆ℬ(𝜆𝑖−1)] = Pr[𝑆ℬ(𝜆𝑖)]

⟹ Pr[𝑆ℬ(1) ∧ 𝑆ℬ(2) ∧ …] ≤ Pr[
∞
⋀
𝑖=0

𝑆ℬ(𝜆𝑖)] =
∞
∏
𝑖=0

Pr[𝑆ℬ(𝜆𝑖)|𝑆ℬ(𝜆0) ∧ … ∧ 𝑆ℬ(𝜆𝑖−1)] ≤
∞
∏
𝑖=0

9
10 = 0.

But there are countably many BQP machines, so Pr[∃ℬ ∶ 𝑆ℬ(1) ∧ 𝑆ℬ(2) ∧ …] = 0. We conclude that ℒ𝒪′ ∉
BQP𝒪′/poly with probability 1 over the choice of (𝐺, 𝒪′), as desired.

31

	Introduction
	Our Work

	Technical Overview
	Discussion and Open Questions
	Structured versus randomness in classical oracle separations
	QMA-completeness of a decoding problem
	Simplifications to the separation

	Preliminaries
	Notation
	Probability and Complexity Theory
	Coding Theory
	Yao's Box Problem and Non-Uniform Advice

	The Generalized Code Intersection Problem
	Definitions and Basic Facts
	Technical Lemmas
	The Biased Yamakawa-Zhandry Algorithm

	Separating QMA from QCMA
	The QMA Proof System
	Non-Existence of QCMA Proof Systems

	Separating BQP/qpoly vs. BQP/poly
	Duals of Multiplicity Codes
	Diagonalization Arguments

