
Separating QMA from QCMA with a classical oracle
John Bostanci1, Jonas Haferkamp2,3, Chinmay Nirkhe4, and Mark Zhandry5,6

1Columbia University, New York, NY, USA
2Saarland University, Saarbrücken, Germany
3Harvard University, Cambridge, Mass., USA
4University of Washington, Seattle, Wash., USA
5Stanford University, Stanford, Calif., USA
6NTT Research, Inc, Sunnyvale, Calif., USA

Abstract

We construct a classical oracle proving that, in a relativized setting, the set of languages decidable
by an efficient quantum verifier with a quantum witness (QMA) is strictly bigger than those decidable
with access only to a classical witness (QCMA). The separating classical oracle we construct is for a de-
cision problem we coin spectral Forrelation – the oracle describes two subsets of the boolean hypercube,
and the computational task is to decide if there exists a quantum state whose standard basis measure-
ment distribution is well supported on one subset while its Fourier basis measurement distribution is
well supported on the other subset. This is equivalent to estimating the spectral norm of a “Forrelation”
matrix between two sets that are accessible through membership queries.

Our lower bound derives from a simple observation that a query algorithm with a classical witness
can be run multiple times to generate many samples from a distribution, while a quantum witness is
a “use once” object. This observation allows us to reduce proving a QCMA lower bound to proving
a sampling hardness result which does not simultaneously prove a QMA lower bound. To prove said
sampling hardness result forQCMA, we observe that quantum access to the oracle can be compressed by
expressing the problem in terms of bosons – a novel “second quantization” perspective on compressed
oracle techniques, which may be of independent interest. Using this compressed perspective on the
sampling problem, we prove the sampling hardness result, completing the proof.

1

Contents

I Introduction 3
1 Proof overview . 4
2 History of the QMA versus QCMA problem . 18
3 Observations and open questions. 19
4 Outline of the paper . 21
5 Preliminaries . 21

II From QCMA algorithms to samplers 27
6 Constructing samplers from strong yes instances . 27
7 Strong yes instances for spectral Forrelation . 31

III A sampling probability upper bound 37
8 Quantum mechanics of bosons . 37
9 Sampler upper bound statement and organization . 40
10 Sampler upper bounds for quasi-even condensates . 41
11 A compressed oracle for bosonic systems . 49
12 Polynomial-query algorithms generate quasi-even condensates . 56

IV Theorem statements and concluding remarks 82
13 Property-testing and oracle separations . 82
14 Concluding remarks . 84
15 Acknowledgments . 87

2

Part I

Introduction
The problem of finding a standard oracle separation between QMA (the class of problems that can be
verified with a quantum computer and quantum witness) and QCMA (the class of problems that can be
verified with a quantum computer and classical witness) is a central open problem in the field of quan-
tum query complexity and is the first question mentioned in Aaronson’s list of open query complexity
problems [Aar21]. The goal of separating QMA from QCMA is, in some sense, to understand the following
question:

Do quantum witnesses offer more power than classical witnesses?

This question was first posed by Aharonov and Naveh [AN02], and partially answered by the work of
Aaronson and Kuperberg [AK07], which provided a quantum oracle separation between the two classes.
Because P ⊆ QCMA ⊆ QMA ⊆ PSPACE, any unconditional separation of the two complexity classes would
imply P ≠ PSPACE and seems unlikely without significantly stronger new tools.

However, the quantum oracle separation of [AK07] could be considered an unsatisfying oracle sepa-
ration between QMA and QCMA, as it avoids answering deeper questions about the power of quantum
witnesses over classical ones. The separation constructs a unitary property testing problem for which a
verifier must exactly know a Haar random state to solve the problem, essentially forcing that any classical
witness for the problem must provide a full classical description of the Haar random state1. The question of
whether QMA equals QCMA necessitates more than a lower bound on the classical description complexity
of a random quantum state; it requires proving that even the single bit identified by the QMA decision
problem cannot be verified by a classical witness. It could be that if QMA does equal QCMA, the QCMA

verifier for a QMA-complete problem would not receive a “verbatim” description of the quantum witness
(such as a circuit preparing the quantum witness), but rather some other classical information derived
(potentially inefficiently) from the instance or the original quantum witness, which can be used to answer
the decision problem but not necessarily to reproduce the quantum witness.

By forcing the oracle to be classical, one hopes to identify more meaningful reasons why useful prop-
erties – beyond the full description of a quantum witness – should be hard to write down in a classical
witness. A final reason for studying the problem of a classical oracle separation is that the question lies in
the rich field of quantum query complexity and has been linked to open questions in quantum cryptog-
raphy, such as the existence of quantum money [Lut11, NZ24] and pseudorandomness against quantum
adversaries [LMY25]. One hopes that finding a classical oracle separation between QMA and QCMA will
provide an improved understanding of the complexity theory underlying these cryptographic questions.

1The notion of “knowing” the state is meant to be more intuitive rather than formal due to the result of [INN+21], where it is
shown that having an oracle that solves the separating problem of [AK07] does not allow one to synthesize the state specified by
the oracle.

3

1 Proof overview

Theorem 1.1 (Classical oracle separation between QMA and QCMA). There exists a pair of oracles 𝑆, 𝑈 ∶
{0, 1}∗ → {0, 1} and a language 𝑆,𝑈 such that 𝑆,𝑈 ∈ QMA𝑆,𝑈 ⧵ QCMA𝑆,𝑈 – i.e., there exists a polynomial-
time quantum verifier taking as input quantum witnesses as input for deciding membership in 𝑆,𝑈 , while no
polynomial-time quantum verifier taking as input classical witnesses can decide membership in 𝑆,𝑈 .

This is the main result of this work. While we express the statement in terms of two oracles, as our
construction is most natural to describe in terms of a quantum algorithm comparing two oracles, it is easy
enough to convert the statement into that of a single oracle.

1.1 The challenges of an oracle separation

To prove this classical oracle separation betweenQMA andQCMA, it suffices to construct a property testing
problem about classical oracles that can be decided with quantum witnesses but cannot be decided with
classical witnesses. The transformation from the property testing problem to an oracle separation between
complexity classes is a diagonalization argument that takes some work but is fairly standard.

The central challenge in separating QMA from QCMA is illustrated in the following thought experi-
ment: Consider measuring a quantum witness |𝜓⟩ for a QMA problem to generate a classical witness. If
the resulting classical object is accepted by the QMA verifier, then the problem must have been in QCMA.
Therefore, for a problem to be in QMA ⧵ QCMA, it follows that for any quantum witness |𝜓⟩ and any
computational basis |𝑥⟩, |⟨𝑥|𝜓⟩| ≤ negl(𝑛), as otherwise 𝑥 would serve as a good classical witness for the
problem2. Here, the phrase negl(𝑛) is used to refer to any function that is smaller than every function
1/poly(𝑛). Therefore, assuming QMA ≠ QCMA, the QMA verification procedure must certify (at least
implicitly) that the quantum witness is a superposition of a super-polynomial number of basis vectors.

Most techniques for verifying such a complex superposition require highly structured oracles, which
presents an inherent challenge for proving a QCMA lower bound. This is because most techniques we
currently know of for proving lower bounds against quantum query algorithms are not amenable to highly
structured oracles. Additionally, a classical witness would naturally be treated as a form of advice about
the oracle, and most quantum query complexity techniques are not very good at distinguishing between
quantum advice and classical advice. If a typical technique succeeded in proving that a language is outside
of QCMA, but it can not distinguish between quantum and classical advice, it would likely show that the
language is outside of QMA as well, failing to give a separation.

Our starting point is the following simple observation made by Zhandry [Zha25], which separates the
functionality of quantum and classical witnesses: if a highly-entangled superposition of computational
basis states |𝜙⟩ is efficiently generated from a classical witness 𝑤, then we can generate a polynomial
number of measurement samples from |𝜙⟩, whereas if |𝜙⟩ is generated from a quantum witness |𝜓⟩, then
we expect that only one measurement sample can be extracted. This is because the classical witness can
be efficiently copied while the quantum witness cannot be. Somewhat paradoxically, this demonstrates
a particular way in which a classical witness is more powerful than a quantum witness. It is precisely

2This can be extended to show that the measurement distribution for any quantum witness for the problem in every compu-
tationally efficient basis cannot have more than negl(𝑛) support on any basis vector.

4

this boost in power that we show is too good to be true, thereby proving the impossibility of an efficient
verification of a classical witness. This observation, however, does not yet indicate how to actually design
the oracles used in the separation.

1.2 Spectral Forrelation

Zhandry [Zha25] gives a candidate oracle for a separation and an initial analysis, but ultimately was unable
to prove the separation. Our oracles are inspired by Zhandry’s, though our approach to analyzing them
is very different. Zhandry [Zha25] defines a variant of the problem that we will call spectral Forrelation3,
which is plausibly in QMA ⧵ QCMA: we say a pair of subsets 𝑆, 𝑈 ⊆ {0, 1}𝑛 are 𝛼-spectrally Forrelated if

𝛼 = ‖‖Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆‖‖
2
op = max

‖|𝜓⟩‖=1
‖‖Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 |𝜓⟩‖‖

2 (1a)

where Π𝑈 = ∑
𝑥∈𝑈

|𝑥⟩⟨𝑥| , Π𝑆 = ∑
𝑥∈𝑆

|𝑥⟩⟨𝑥| . (1b)

Figure 1: A cartoon of spectral Forrelation. The subsets 𝑆 and 𝑈 occupy support in the standard/position and
Hadamard/momentum bases, respectively. The sets 𝑆 and 𝑈 are ≥ 𝛼-spectrally Forrelated if there exists a
state |𝜓⟩ such that ‖Π𝑈𝐻⊗𝑛Π𝑆 |𝜓⟩‖2 ≥ 𝛼. Equivalently, there exists a state |𝜓⟩ for which the induced classical
distributions by measuring in the standard and Hadamard bases are well supported on 𝑆 and 𝑈 , respectively.

Spectral Forrelation can also be expressed as a property of functions 𝑆, 𝑈 ∶ {0, 1}𝑛 → {0, 1}, where the
set identified with a function is the pre-image of 1. A decision version of the spectral Forrelation problem

3The name comes from the notion of Forrelation, defined by Aaronson [Aar10]. He defined the “Forrelation” between two
functions 𝑓 , 𝑔 ∶ {0, 1}𝑛 → {±1} as the quantity ⟨+|⊗𝑛 diag(𝑓) ⋅ 𝐻⊗𝑛 ⋅ diag(𝑔) |+⟩⊗𝑛 . When 𝑓 , 𝑔 are described by oracles, Aaron-
son [Aar10, AA15] gives a simple BQP algorithm for deciding if the absolute value of the Forrelations is ≥ 3/5 or ≤ 1/100: simply
prepare |+⟩⊗𝑛, apply the reflection diag(𝑔), perform the Hadamard transform 𝐻⊗𝑛, and apply the reflection diag(𝑓), and measure
to see if the output is |+⟩⊗𝑛. On the other hand, Aaronson shows that any algorithm making randomized classical queries to 𝑆
and 𝑈 needs an exponential number of queries to decide Forrelation.

3Note that Zhandry [Zha25] actually used different notation and used the QFT mod𝑁 = 2𝑛 in place of the Hadamard transform,
but the underlying idea of two projectors in anti-commuting bases remains the same.

5

can be defined for two parameters 𝛼 > 𝛽. The task is to decide if the pair (𝑆, 𝑈) are at least ≥ 𝛼-spectrally
Forrelated (yes instance) or at most ≤ 𝛽-spectrally Forrelated (no instance), promised that one of the cases
holds. For 𝛼 − 𝛽 ≥ 1/poly(𝑛), yes instances of spectral Forrelation can be verified with a 𝑛-qubit quantum
witness, namely the top singular vector |𝜓⟩ of Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 (similar to plain Forrelation [Aar10], but using
|𝜓⟩ instead of |+⟩⊗𝑛). On the other hand, it can be shown that without |𝜓⟩, Spectral Forrelation is hard
even for quantum query algorithms. This puts Spectral Forrelation in QMA ⧵ BQP. The question remains:
is spectral Forrelation outside QCMA?

1.3 QCMA algorithms imply good one oracle samplers

Let us assume, for contradiction, that there exists a QCMA query algorithm  for spectral Forrelation
requiring a 𝑞 = 𝑞(𝑛) sized classical witness and making 𝑡 = 𝑡(𝑛) oracle queries, where 𝑞(𝑛), 𝑡(𝑛) are
polynomials. A simple transformation can convert into an algorithm which separately makes≤ 𝑡 queries
to 𝑆 and ≤ 𝑡 queries to 𝑈 .

To prove the impossibility of a QCMA algorithm, we restrict our attention to a subset of all spectrally
Forrelated pairs (i.e., yes instances): First, we require pairs (𝑆, 𝑈) with the property that the oracle 𝑆 is
sparse, consisting of approximately 𝓁 non-zero entries where 𝓁 = 2𝑐𝑛 for some small constant 𝑐. Secondly,
we require that (Δ, 𝑈) is a no instance for all subsets Δ ⊆ 𝑆 with |Δ| ≪ 𝓁. We describe pairs (𝑆, 𝑈) satisfying
this second property as being strong, and we will sketch in Subsection §1.4 a technique for generating a
distribution over sparse and strong yes instances.

Let 𝑤 = 𝑤(𝑆, 𝑈), be a witness certifying that (𝑆, 𝑈) is a yes instance. In other words, (𝑆,𝑈)(𝑤)
accepts with high probability4. Since we take (𝑆, 𝑈) to be a strong yes instance and thus have that for any
small subset Δ, (Δ, 𝑈) is a no instance of spectral Forrelation, it follows that (Δ,𝑈)(𝑤) accepts with low
probability.

Let us express the algorithm (𝑆,𝑈)(𝑤) as a sequence of unitaries interspersed with queries to the
𝑆 oracle. Assuming that the queries to the 𝑈 oracle are included in the unitaries {𝑉𝑗 }, the state of the
algorithm  immediately before its final measurement is given by:

pre-measurement state of (𝑆,𝑈)(𝑤) = 𝑉𝑡𝑆𝑉𝑡−1𝑆 …𝑆𝑉0 |𝑤, 0⟩ . (2)

Where we take 𝑆 to be the phase oracle for the function that checks membership in 𝑆. Then the state
𝑉𝑗𝑉𝑗−1…𝑉0 |𝑤, 0⟩ is equivalent to running the algorithm (∅,𝑈)(𝑤) until immediately prior to the 𝑗-th
oracle query. Since (𝑆, 𝑈) is a yes instance, (∅, 𝑈) is a no instance, and  must distinguish the two cases, it
must be that  is actually putting significant query weight on points where 𝑆 and ∅ differ, namely points
in 𝑆. As a consequence, it follows from a hybrid argument similar to that of Bennett et. al. [BBBV97], that
picking a uniformly random index 𝑗 ∈ [𝑡] and measuring the query register of 𝑉𝑗𝑉𝑗−1…𝑉0 |𝑤, 0⟩ will yield
a sample 𝑥1 from 𝑆 with probability Ω(𝑡−2). In other words, there exists an algorithm which only queries 𝑈
and takes a witness 𝑤, but produces a sample 𝑥1 from 𝑆 with noticeable probability. This is not surprising
as information about 𝑥1 could be encoded in 𝑤.

4Note that the perfect completeness of QCMA algorithms with access to classical oracles was proven by Jordan et. al. [JKNN12]
but we do not need that result here.

6

Quantum witness

|𝜓⟩ U 𝑥

Classical witness

𝑤 U

U

U

𝑥1

𝑥2

𝑥3

⋮

Figure 2: Adaptive sampling from a classical witness. A quantum witness |𝜓⟩ yields a single sample 𝑥
upon measurement with an algorithm accessing only 𝑈 . Whereas, a classical witness 𝑤 can be reused across
successive sampling rounds with an adaptive sampler accessing only𝑈 and prior samples to generatemultiple
distinct samples.

A more surprising fact is that a small modification of this sampler can be used to generate many unique
samples5. Let us condition on the event that 𝑥1 ∈ 𝑆. Consider now picking again picking a uniformly
random index 𝑗 ∈ [𝑡] but this time measuring the query register of 𝑉𝑗Δ𝑉𝑗−1Δ…Δ𝑉0 |𝑤, 0⟩ where
Δ = id − 2 |𝑥1⟩⟨𝑥1|. This is equivalent to running the algorithm {𝑥1},𝑈 (𝑤) until immediately prior to the
𝑗-th oracle query. Since ({𝑥1}, 𝑈) is also a no instance, the hybrid argument between (𝑆, 𝑈) and ({𝑥1}, 𝑈)
yields that the generated sample 𝑥2 satisfies

ℙ [𝑥2 ∈ 𝑆 ⧵ {𝑥1} |𝑥1 ∈ 𝑆] ≥ Ω(𝑡−2). (3)

In other words, conditioned on 𝑥1 ∈ 𝑆, this procedure generates a unique second point 𝑥2 ∈ 𝑆. In general,
we can repeat this process 𝑣 times for 𝑣 ≪ 𝓁, each time generating a novel sample from 𝑆 conditioned on
the previous samples being from 𝑆. Therefore, there exists a sampler that only queries 𝑈 and produces 𝑣
unique samples from 𝑆 with probability ≥ (Ω(𝑡−2))𝑣 when provided the correct witness𝑤. See Figure 2 for
a cartoon illustration of this iterated sampler. For 𝑣 ≥ Ω(𝑞/𝑛), where 𝑞 is the length of the witness, this
yields unexpected consequences, as it means that the sampling algorithm cannot simply read the names of
samples from the witness; it must also continue to find more samples from its access to 𝑈 . We can make
this explicit by constructing a new sampler which guesses the witness 𝑤 initially at a 2−𝑞 cost in success
probability, yielding the following theorem.

Theorem 1.2 (Good samplers from QCMA algorithms (informal)). Assume there exists a classical witness
query algorithm  for spectral Forrelation requiring a 𝑞 = 𝑞(𝑛) sized classical witness and making 𝑡 = 𝑡(𝑛)
oracle queries. Let (𝑆, 𝑈) be a strong yes instance of spectral Forrelation. For all 𝑣 = 𝑣(𝑛) polynomial in
𝑛, there exists a query algorithm CumulativeSampler such that CumulativeSampler𝑈 makes no queries to 𝑆, 𝑣𝑡
queries to 𝑈 , and produces 𝑣 unique samples from 𝑆 with probability at least ≥ 2−𝑞 ⋅ Ω(𝑡)−2𝑣.

5Note that as written, there is no guarantee that repeating this experiment with the empty oracle would generate a different
sample.

7

Our primary goal then is to show that the sampler promised by Theorem 1.2 is too good to be true,
implying that the assumed classical witness query algorithm cannot exist. A first intuition as to why this
sampler should not exist is to consider a query algorithm ̃CumulativeSampler that only makes 𝑣𝑡 queries
to 𝑆 and produces 𝑣 unique samples from 𝑆. It would be natural to expect that access directly to 𝑆
(as opposed to some spectrally Forrelated 𝑈) should only be more useful for outputting samples from
𝑆. Yet, by the result of Hamoudi and Magniez [HM23], we know an upper bound on the success prob-
ability of ̃CumulativeSampler is at most 𝑂(𝑡2𝓁/2𝑛)𝑣. If we compare this upper bound to the supposed
CumulativeSampler guaranteed by Theorem 1.2: for 𝑡, 𝓁 small relative to 2𝑛 and 𝑣 ≥ Ω(𝑞/𝑛), we have
𝑂(𝑡2𝓁/2𝑛)𝑣 ≪ 2−𝑞 ⋅ Ω(𝑡)−2𝑣. Therefore, if the sampler CumulativeSampler from Theorem 1.2 were to actually
exist, it would mean that quantum access to any set 𝑈 spectrally Forrelated with 𝑆 yields a significantly
better sampler than quantum access to the set 𝑆 itself! This is the first indication that we should be able
to prove a QMA versus QCMA oracle separation using this insight about samplers. Of course, this is just
intuition; we will actually need to prove that query access to 𝑈 does not help too much in producing points
in 𝑆.

Let us emphasize that we cannot derive an analogous theorem from a quantum witness query algo-
rithm. While we can run the query algorithm with a random witness by using id/2𝑞 as a proxy for the
quantum witness, we do not know how to construct a sampling algorithm that continuously produces
samples. The CumulativeSampler in Theorem 1.2 relies on being able to copy the same witness from one
iteration to the next, which is impossible for quantum witnesses. Therefore, proving that the result of The-
orem 1.2 is too good to be true does not yield a lower bound for quantum witness query algorithms. This
is the fundamental reason that our QCMA-lower bounding technique can separate it from QMA.

Remark 1.3. Note that Zhandry [Zha25] utilized a similar approach of turning a QCMA verifier into a sam-
pler, except instead of removing oracle queries to 𝑆, his approach is to remove oracle queries to 𝑈 while keeping
queries to 𝑆. He removes queries to 𝑈 under a general conjecture about the quantum indistinguishability of
two oracle distributions whose 𝑘-wise marginals are close in relative error. Unfortunately, this general conjec-
ture turns out to be false: (plain) Forrelation gives oracles whose 𝑘-wise marginals are close in relative error
to random oracles (as proved by Aaronson [AA15]), but the Forrelation algorithm gives a distinguisher6. This
refutes the general conjecture of Zhandry, but not necessarily the concrete application to removing the oracle
𝑈 . Nevertheless, we opt for a different approach which sidesteps this issue by removing queries to 𝑆 before
analyzing 𝑈 .

1.4 A family of strong yes instances

One method of proving that Theorem 1.2 is too good to be true is to construct a distribution over strong
yes instances and to argue that no sampling algorithm could succeed with the probability guaranteed
by Theorem 1.2 with respect to this distribution. The introduction of strong yes instances is fundamental
for two reasons. The first is type-checking; in order to argue about the behavior of the sampler, we need
both yes and no instances of the original problem. By considering strong yes instances, we are implicitly
considering no instances. Second, being a strong yes instance is a bare-minimum requirement for sep-
arating QMA from QCMA, as yes instances that are not strong have short classical witnesses: suppose

6We thank Uma Girish for pointing this out to us in the initial phases of this work.

8

(Δ, 𝑈) is a yes-instance for some Δ ⊂ 𝑆 such that |Δ| = poly(𝑛), and consider the top eigenvector |ΨΔ⟩
of ΠΔ ⋅ 𝐻⊗𝑛 ⋅ Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ ΠΔ. Since Δ ⊂ 𝑆, we also have that ⟨ΨΔ| Π𝑆 ⋅ 𝐻⊗𝑛 ⋅ Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 |ΨΔ⟩ is large.
In particular, this means that |ΨΔ⟩ is also a good witness for the instance (𝑆, 𝑈). However, |ΨΔ⟩ can be
classically described using 𝑂(|Δ| ⋅ poly(𝑛)) bits (since its support is limited to Δ, and therefore there are
only |Δ| many amplitudes required to describe it). Therefore, any hope of proving a separation between
QMA and QCMA relies on studying the behavior of strong yes instances.

We now describe how to sample from a distribution over strong yes instances. Recall that we pick
𝓁 = 2𝑐𝑛 for some small constant 𝑐. We first construct a (multi)set 𝑆 = {𝑠1, … , 𝑠𝓁} by uniformly randomly
sampling 𝓁 elements of {0, 1}𝑛 with replacement. Observe that with all but 1 − Ω(𝓁2/2𝑛) probability, the
elements of 𝑆 will be distinct. We then construct a distribution over sets 𝑈 which, with high probability,
is spectrally Forrelated with 𝑆, with |𝑆⟩ – the uniform superposition over 𝑆 – serving as the witness state.
Concretely, we first compute the terms for 𝑦 ∈ {0, 1}𝑛,

𝛾 (𝑆)𝑦
def=

1
𝓁
∑
𝑖,𝑗∈[𝓁]

(−1)𝑦⋅(𝑠𝑖⊕𝑠𝑗). (4)

Observe that 𝛾 (𝑆)𝑦 equals 2𝑛 times the square of the amplitude 𝐻⊗𝑛 |𝑆⟩ places on 𝑦. We construct the set 𝑈
by adding each 𝑦 ∈ {0, 1}𝑛 to 𝑈 with independent probability 1 − 1

2e
−𝜅𝛾 (𝑆)𝑦 . Here 𝜅 is a small constant, say

1/10.

set 𝑆 of size 𝓁

𝑆

density of 𝐻⊗𝑛 |𝑆⟩ sample of set 𝑈

𝑈

𝐻⊗𝑛 sampling

Figure 3: A depiction of how the pair (𝑆, 𝑈) is sampled: (a) First, the multiset 𝑆 is first sampled uniformly
randomly; (b) second, for each 𝑦 ∈ {0, 1}𝑛, a parameter 𝛾 (𝑆)𝑦 is calculated; (c) third, a set 𝑈 is sampled by

including 𝑦 with independent probability 1 − 1
2e

−𝜅𝛾 (𝑆)𝑦 .

Remark 1.4. Zhandry [Zha25] constructs (𝑆, 𝑈) in a similar manner, but used a Haar-random state on the
support of |𝑆⟩ as the witness state, and used a slightly different probability distribution for the sampling of 𝑈 .

We prove that a random pair (𝑆, 𝑈) sampled via this distribution, which we call Strong, is a strong yes
instance with overwhelming probability. The proof of this construction is a somewhat involved medley
of concentration inequalities and polynomial approximations. An intuition for why this procedure yields
strong yes instances with high probability is that we expect the matrix 𝑀 = Π𝑆 ⋅ 𝐻⊗𝑛 ⋅ Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆
to concentrate tightly around 𝑎 |𝑆⟩⟨𝑆| + 𝑏 ⋅ id𝑆 for constants 𝑎 and 𝑏 , where id𝑆 is the identity matrix
restricted to the coordinates of 𝑆. The concentration in the last statement holds even only with respect to
the randomness involved in sampling 𝑈 from 𝑆. We expect such a concentration since 𝐻⊗𝑛|𝑆⟩ has high
amplitude exactly on elements that are more likely to be included in 𝑈 , while for states |𝜓⟩ supported on

9

𝑆 but orthogonal to |𝑆⟩, we expect the amplitude of 𝐻⊗𝑛|𝜓⟩ to be distributed largely independently of the
amplitudes in 𝑈 .

Due to this concentration, with high probability |𝑆⟩ is a quantum witness that (𝑆, 𝑈) are ≈ (𝑎 + 𝑏)-
spectrally Forrelated. Moreover, for any subset Δ ⊆ 𝑆, the restriction of 𝑎 |𝑆⟩⟨𝑆| + 𝑏 ⋅ id𝑆 to Δ is just
𝑎|Δ|
𝓁 |Δ⟩⟨Δ| + 𝑏 ⋅ idΔ, whose top eigenvalue is just (𝑏 + 𝑎|Δ|/𝓁) ≪ (𝑎+𝑏). By choosing our thresholds for yes

and no instances appropriately, we have a large family of strong yes instances.
In our actual proof, we do not require proving tight concentration bounds for the entries of the matrix

𝑀 , though we expect that such concentration bounds do hold. Nevertheless, guided by this intuition, we
are able to bound the top eigenvalues of 𝑀 and its restrictions to small subsets Δ.

More specifically, we prove that with probability 1 − 2−Ω(𝑛), a pair (𝑆, 𝑈) sampled according to said
procedure is a strong yes instance. Combined with the CumulativeSampler of Theorem 1.2, we derive that
the CumulativeSampler must produce samples from 𝑆 with probability at least 2−𝑞 ⋅ Ω(𝑇)−2𝑣 when run on 𝑈
for a pair (𝑆, 𝑈) sampled according to said procedure.

Remark 1.5. Looking ahead to our QCMA lower-bound, choosing 𝛾 (𝑆)𝑧 proportional to the squared amplitude
is critical. It turns out that, if we instead choose 𝛾 (𝑆)𝑦 to be proportional to the (non-squared) amplitude, then the
instance (𝑆, 𝑈) we obtain is actually in BQP, and so also in QCMA. This is because we can approximately syn-
thesize 𝐻⊗𝑛 |𝑆⟩ given access to just the sign of ⟨𝑦|𝐻⊗𝑛|𝑆⟩ by generating the state 1√

2𝑛 ∑𝑦 sgn(⟨𝑦|𝐻⊗𝑛|𝑆⟩) |𝑦⟩
(as first observed by Irani et. al. [INN+21]). Therefore, the critical information is embedded in the signs of
⟨𝑦|𝐻⊗𝑛|𝑆⟩. However, by choosing 𝛾 (𝑆)𝑦 to be proportional to the squared amplitude, this information is not ac-
cessible to the verification algorithm. A second reason for the importance of squaring is that 𝛾 (𝑆)𝑦 is invariant
under shifts of 𝑆, which plays a crucial role in our sampling upper bound.

1.5 Sampling success probability upper bounds

The remainder of the proof is a sampling probability upper bound, which we can express as the following
statement. We use the notation poly(⋅) to vastly simplify the statement; the technical statement is Theo-
rem 9.1.

Theorem 1.6 (Sampling probability upper bound (informal)). Let Strong be the distribution over pairs (𝑆, 𝑈)
discussed previously. Then any 𝑇 -query algorithm accessing only 𝑈 produces 𝑣 distinct samples from 𝑆 with
probability at most

(
poly(𝑛, 𝑇)
poly(𝓁))

𝑣

+ (
poly(𝑛, 𝑇)

√
𝓁

2Ω(𝑛))

𝑣

. (5)

This theorem will contradict the conclusion of Theorem 1.2 for a choice of 𝑣 = Ω(𝑞).

To give intuition for the form of this bound, we can consider two edge cases. First, when 𝓁 is large,
it becomes easy to sample points from 𝑆, as random points are likely to be in 𝑆. This gives us the second
term in the sum, which becomes large when 𝓁 approaches 2𝑂(𝑛). At the same time, when 𝓁 becomes too
small, 𝑈 becomes more concentrated, potentially revealing information about the structure of 𝑆. Our proof
implicitly balances these two effects to achieve our sampling upper bound.

10

An insightful technique for proving upper bounds on the success probability of low-query quantum
algorithms is to consider the behavior of the query algorithm on a superposition of possible oracles. This
technique was first used in the adversary method of Ambainis [Amb02] (to generalize the Bennett et.
al. [BBBV97] lower bound for unconstrained search). Instead of viewing the oracles as getting access to
unitaries that modify the state of the algorithm, the adversary method treats the oracle as a long vector
and each oracle query as a fixed phase kickback unitary on the joint state of the algorithm and oracle. For
example, a query to the oracle 𝑈 can be described by the controlled phase unitary,

|𝑏, 𝑥, 𝑦⟩ ⊗ |tt𝑈 ⟩ ↦ (−1)𝑏⋅𝑈(𝑦) |𝑏, 𝑥, 𝑦⟩ ⊗ |tt𝑈 ⟩ (6)

where |𝑏, 𝑥, 𝑦⟩ is the state of the algorithm and |tt𝑈 ⟩ is the long vector description of the oracle (here,
tt stands for “truth table”). We note that it is known that this kind of “phase” oracle is equivalent (up
to a Hadamard transform) to the standard oracle. In this manner, it is natural to consider the behavior
of an algorithm when run on the superposition over oracles. Studying the behavior when run on the
superposition is a useful way of arguing query lower bounds and sampling probability upper bounds over
the randomness in the oracle distribution and the randomness of the algorithm. A central challenge in
proving quantum query lower bounds is designing a suitable perspective on the superposition over oracles
that is clean enough to prove lower bound statements. Zhandry’s compressed oracle technique [Zha19] is
one method for effectively describing the superposition over oracles. Hamoudi and Magniez [HM23] were
some of the first to use the compressed oracle technique to prove sampling probability upper bounds for
problems such as unconstrained search and collision finding.

1.6 A bosonic perspective

To prove the desired sampling upper bound in this particular scenario, we introduce a new compression
technique. We construct a compression of the superposition over oracles (𝑆, 𝑈) by expressing the oracle
in terms of bosons. This perspective will naturally clean up much of the technical calculations as well
as provide a physical perspective on the query algorithm. This view of the superposition over oracle
pairs (𝑆, 𝑈) can be interpreted as a “first quantization” of compressed oracle techniques, which may be of
independent interest. To understand this bosonic perspective in detail, it is helpful to initially ignore the
oracle 𝑈 and instead concentrate on only constructing a purification of uniformly sampling a multiset 𝑆
of size 𝓁.

There are two natural ways to express the multiset 𝑆: we can express the set as a vector in ({0, 1}𝑛)𝓁,
each coordinate corresponding to one point in 𝑆, and the value at that coordinate telling us the value of that
point. This representation is, however, not unique, as permuting the vector does not change the multiset.
Alternatively, we can express the multiset as a vector in ℤ2𝑛

≥0 of 1-norm 𝓁 with the 𝑥’th entry representing
how many times 𝑥 appears in 𝑆. The second perspective can be seen as tossing 𝓁 indistinguishable balls
into 2𝑛 bins with each toss being uniformly random.

The quantum mechanical analog of a multiset is a collection of bosons. Consider a system of 𝓁 bosons,
each of which occupies a “state” from {0, 1}𝑛. A characteristic of bosons is that any number of bosons may

11

⋯

Figure 4: A depiction of the bosonic Fock state |𝜓⟩ = |10, 0, 2, 0, 2, 0, … , 1⟩.

occupy the same state. Thus, the state of the 𝓁 bosons7 is exactly described by a multiset 𝑆 over {0, 1}𝑛.
Then, the two perspectives above give two different ways to represent a bosonic system.

We now give a brief primer on bosonic systems. Bosonic systems are described in terms of modes,
each of which corresponds to an independent quantum degree of freedom. In physics, a mode may be
defined in position space, where it is associated with a localized site or spatial region, or in momentum
space, where it is associated with a plane-wave excitation. These two descriptions are related by a Fourier
transform, so that switching between position and momentum modes is analogous to changing bases in
a Hilbert space. In the position basis, one specifies a set of operators {𝑎𝑥 , 𝑎

†
𝑥 } that annihilate or create a

boson at position 𝑥 , respectively. The number of bosons in a particular (position) mode is unrestricted,
with the number operator 𝑛𝑥 = 𝑎†𝑥𝑎𝑥 measuring the occupation of (position) mode 𝑥 . This representation
is natural when considering local interactions or spatially constrained dynamics. In the momentum basis,
one works instead with operators {𝑎𝑥 , 𝑎

†
𝑥 } that annihilate or create excitations of definite momentum 𝑥 ,

respectively. Analogously, the number of bosons in a momentum mode is unrestricted, with the number
operator 𝑛𝑥 = 𝑎†𝑥𝑎𝑥 measuring the occupation of momentum mode 𝑥 . As one might suspect, the total
number of bosons in the position basis 𝑁 = ∑𝑥 𝑛𝑥 equals the total number of bosons in the momentum
basis 𝑁 = ∑𝑥 𝑛𝑥 . The momentum description is particularly convenient for systems with translation
invariance, where the state of the system takes a simple diagonal form in momentum space.

In this work, we consider a simplified “computer science” perspective on bosons. Our system consists
of 2𝑛 modes indexed by elements of {0, 1}𝑛. Sometimes it will be convenient to index them using the
isometry [2𝑛] ≡ {0, 1}𝑛; so the 0-momentum mode is equivalent to the 0𝑛-momentum mode. Instead of
relating the position and momentum creation/annihilation operators by the Fourier transform, we define
our momentum creation/annihilation operators in terms of the Hadamard transform:

𝑎𝑥 =
1√
2𝑛

∑
𝑧∈{0,1}𝑛

(−1)𝑥⋅𝑧𝑎𝑧 , 𝑎†𝑥 =
1√
2𝑛

∑
𝑧∈{0,1}𝑛

(−1)𝑥⋅𝑧𝑎†𝑧 . (7)

In this equation, the indexing variables 𝑥, 𝑧 are elements of {0, 1}𝑛 and 𝑥 ⋅ 𝑧 equals the inner product
of the vectors over 𝔽2. In Section §8, we elaborate on the mathematics of bosons. For now, however,
simply observe that the 0-momentum mode creation operator, 𝑎†0 , is the uniform superposition over all
position creation operators as it equals 1√

2𝑛 ∑𝑧 𝑎
†
𝑧 . Therefore, the uniform superposition of a single boson

in a random position mode is a single boson in the 0-momentum mode. This generalizes to: the uniform
superposition of 𝓁 bosons each in an independently random position mode is 𝓁 bosons in the 0-momentum
mode. We can interpret this as a computer science version of the Heisenberg uncertainty principle [Hei27]:
certainty about the momentum of a set of bosons implies maximal uncertainty about the positions of the
bosons.

7Whereas, for a fermionic system, by the exclusion principle, two fermions cannot occupy the same state, and so a fermionic
system corresponds to an ordinary set.

12

Lastly, a convenient basis for studying bosonic states is the Fock basis, which records the number of
bosons in each mode. One can write down Fock basis states in either the position or momentum basis.
The bosonic (position) Fock basis is a collection of orthonormal states of the form |𝓁0, 𝓁1, … , 𝓁2𝑛−1⟩ with each
𝓁𝑥 ∈ ℤ≥0 where the total number of bosons is ∑𝑥 𝓁𝑥 . In this setting, the annihilation and creation operators
can be defined as the operators such that:

|𝓁0, … , 𝓁𝑥 − 1,… , 𝓁2𝑛−1⟩ =
𝑎𝑥√
𝓁𝑥

|𝓁0, … , 𝓁𝑥 , … , 𝓁2𝑛−1⟩ (8a)

|𝓁0, … , 𝓁𝑥 + 1,… , 𝓁2𝑛−1⟩ =
𝑎†𝑥√
𝓁𝑥 + 1

|𝓁0, … , 𝓁𝑥 , … , 𝓁2𝑛−1⟩ . (8b)

1.7 The hardness of sampling without queries

Having set up this machinery, we observe that a purification of sampling a uniformly random multiset of
size 𝓁 is exactly the state of 𝓁 bosons in the 0-momentum mode. And having defined a suitable purification,
we can progress to sampling probability bounds. In the bosonic perspective, guessing elements of 𝑆 is
equivalent to identifying position modes where the algorithm believes bosons reside. A first step to proving
that Theorem 1.2 is too good to be true, is showing that an algorithm that makes 0 queries to the oracle
cannot identify with good probability position modes which contain bosons.

This “baby” problem is easy enough to prove via classical combinatorics, but we will purposefully
resolve it by appealing to more quantum mechanical techniques. Observe that, by the relationship of
position and momentum operators (eq. (7)), the state of a single boson in a fixed momentum mode 𝑎†𝑥 |vac⟩
is equal to ∑𝑦(−1)𝑥⋅𝑦𝑎𝑦

† |vac⟩, a superposition of being in every position mode, with phases corresponding
to 𝑥 . Therefore, the probability that any position guess 𝑦 is correct is 2−𝑛. This is one example of a
Heisenberg uncertainty principle [Hei27] with a more general form being that if the state of a single
boson is supported on at most 𝑟 momentum modes 𝑥1, … , 𝑥𝑟 , i.e., the state equals ∑𝑟

𝑖=1 𝛼𝑖𝑎
†
𝑥𝑖 |vac⟩, then the

probability that any position guess 𝑦 is correct is ≤ 𝑟/2𝑛. In greater detail, what we can actually prove
is for any 𝑧 ∈ {0, 1}𝑛, ⟨𝜓|𝑛𝑧 |𝜓⟩ = 𝑟𝓁/2𝑛 for any 𝓁-boson state supported on at most 𝑟 modes. Recall that
𝑛𝑧 is the operator counting the number of bosons at location 𝑧. We can define Π𝑛𝑧>0 as the projector onto
having a non-zero number of bosons in location 𝑧. Observe that 𝑛𝑧 ≥ Π𝑛𝑧>0. Then, the probability that a
guess of location 𝑧 is correct is equal to ⟨𝜓|Π𝑛𝑧>0|𝜓⟩ ≤ ⟨𝜓|𝑛𝑧 |𝜓⟩ = 𝑟𝓁/2𝑛. From here, we can conclude
that the first guess has probability at most 𝑟𝓁/2𝑛 of being correct, irrespective of which position mode 𝑧 is
guessed.

In this argument, we made a conceptual shift that turns out to be quite useful mathematically. Instead of
studying the expectation of the state with respect to Π𝑛𝑧>0, we chose to study the expectation with respect
to 𝑛𝑧 . This is mathematically equivalent to applying Markov’s inequality (𝔼[Π𝑋>0] = ℙ[𝑋 > 0] ≤ 𝔼[𝑋]
for any random variable 𝑋 ≥ 0). This weaker bound will be sufficient for our argument. This argument
naturally generalizes: to upper bound the probability of finding bosons at each of 𝑧1, … , 𝑧𝑣 for distinct
indices 𝑧1, … , 𝑧𝑣 (which is equal to the expectation with respect to Π𝑛𝑧1>0…Π𝑛𝑧𝑣>0), the Markov inequality
upper bound lets us instead bound the expectation with respect to 𝑛𝑧1 …𝑛𝑧𝑣 . Next, observe that 𝑛𝑧1 …𝑛𝑧𝑣
equals 𝑎†𝑧1 …𝑎

†
𝑧𝑣𝑎𝑧𝑣 …𝑎𝑧1 when the indices are distinct. Therefore, the expectation of 𝑛𝑧1 …𝑛𝑧𝑣 is equal to

‖‖𝑎𝑧𝑣 …𝑎𝑧1 |𝜓⟩‖‖
2, the norm of the state after applying 𝑣 annihilation operators.

13

To analyze the norm of applying two annihilation operators 𝑎𝑧2𝑎𝑧1 when the state of the oracle is
𝓁-bosons in the 0-momentum mode, we can study how the multiplicative norm decreases with each se-
quential operator application. We observe that the normalized state after annihilating a boson at location
𝑧1 will again only be supported on bosons in the 0-momentum mode: annihilating this boson did not affect
the remaining bosons, and so the resulting state will be 𝓁 − 1 bosons in the 0-momentum mode. It follows
that the following annihilation decreases the norm multiplicatively by at least (𝓁− 1)/2𝑛. We can continue
this observation proving an upper bound of ≤ (𝓁/2𝑛)𝑣 for the norm of the vector after 𝑣 annihilations. This
proves a bound on the success probability of guessing 𝑣 locations without making any queries at all. If our
initial state was supported on 𝑟 distinct momentum modes, the same argument would have produced an
upper bound of ≤ (𝑟𝓁/2𝑛)𝑣.

1.8 Understanding the action of queries to the 𝑈 oracle

To prove an upper bound on the sampling probability after some queries to 𝑈 , we need to extend the prior
sampling probability upper bound to a broader set of initial states. The previous argument was particular to
the state of 𝓁 bosons in the 0-momentum mode. To extend the argument, it is first illustrative to understand
what the superposition of the algorithm and oracle registers looks like after making 𝑇 = poly(𝑛) queries
to the 𝑈 oracle. What we discover is that the state of the oracle after 𝑇 queries can be described as what
we coin a quasi-even condensate and unpack below.

First, the phrase condensate. We borrow the term condensate from many-body physics, where it de-
notes a regime in which a macroscopic fraction of bosons occupy a single-particle mode. In our case, we
use it to refer to a system where almost all the bosons are in the 0-momentum mode. Concretely, for us,
a momentum Fock state is an 𝑟-condensate if at least 𝓁 − 𝑟 of the bosons are in the 0-momentum mode.
Equivalently, at most 𝑟 bosons are not in the 0-momentum mode. An 𝑟-condensate may be a superposition
of momentum Fock states that are 𝑟-condensates. This work considers states where 𝓁 = 2𝑐𝑛 and we will
consider 𝑟 = poly(𝑛), so only a negligible fraction of the bosons are not in the 0-momentum mode.

Second, the phrase quasi-even. For a momentum Fock state, we say that the state is 𝑜-quasi-even if at
most 𝑜 of the momentum modes (except the 0-mode) have an odd number of bosons in them. A general
state is 𝑜-quasi-even if it is entirely supported on momentum Fock states which are 𝑜-quasi-even. A priori,
the definition of quasi-even isn’t nearly as motivated as the definition of a condensate (which has a natural
physical interpretation). However, upon analysis of queries to the 𝑈 oracle, studying how quasi-even a
state is will become apparent.

Both being a condensate and being quasi-even are properties in the momentum basis. Therefore, we can
define projectors onto the momentum Fock states that satisfy them. Since the projectors are both diagonal
in the momentum Fock basis, they commute. So, the definition of a state as a (𝑟, 𝑜)-quasi-even condensate
is well-defined. Roughly speaking, our characterization theorem shows that the post-query state |𝜓PQ⟩
satisfies the following: for all 𝜄 > 0, there exists another state |𝜓′⟩ such that (a) ‖‖ |𝜓PQ⟩ − |𝜓′⟩‖‖ ≤ 𝜄 and
(b) |𝜓′⟩ is a (𝑟, 𝑜)-quasi-even condensate for 𝑟 = poly(𝑛, 𝑇 , log(1/𝜄)) and 𝑜 ≪ 𝑣/4 with overwhelming
probability (i.e., (1 − poly(𝑇)/

√
𝓁)𝑂(𝑣)) as long as poly(𝑇) ≪ 𝓁.

This particular characterization of the post-query state is important because we are additionally able
to show that the sampling success probability of any algorithm for which the post-query state is such
a quasi-even condensate decays exponentially fast with 𝑣. These two ingredients combine to prove our

14

sampling probability upper bound. We have not yet answered two fundamental questions: (1) why are
post-query states effectively quasi-even condensates and how do we prove it, and (2) why is there a sam-
pling probability upper bound for quasi-even condensates.

The answer to the first question comes from understanding the behavior of a single query to the oracle
𝑈 at 𝑦. What we can formally prove is that a query at 𝑦 applies a polynomial in the exponential function
of the “double 𝑦-momentum hopping operator”, which is defined as:

𝐇̃𝑦
def=

1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎
†
𝑥′⊕𝑦𝑎𝑥𝑎𝑥′ . (9)

As the name may suggest, the action of 𝐇̃𝑦 on a momentum Fock state is to pick two modes 𝑥, 𝑥′ which
contain bosons and “hop” each of the bosons by 𝑦. The action of the 𝐇̃𝑦 moves around momentum Fock
states, but perhaps surprisingly, it is diagonal in the position basis and its action can be described in terms
of the coefficients 𝛾 (𝑆)𝑧 which were defined in eq. (4).

⋯

Figure 5: A depiction of 𝑎†0⊕3𝑎
†
0⊕3𝑎0𝑎0 |𝜓⟩ which is one component in the sum 𝐇̃3 |𝜓⟩.

In slightly more detail, recall that we choose to include 𝑦 ∈ 𝑈 with (independent) probability 1 −
e−𝜅𝛾

(𝑆)
𝑦 /2 where 𝛾 (𝑆)𝑦 was defined in eq. (4) and 𝜅 is a small constant (think 1/10). The use of the exponential

functions will have further technical implications for the rest of the proof, but for intuition, observe that
the first-order Taylor approximation of this probability equals8 1/2 + 𝜅𝛾 (𝑆)𝑦 /2. On the other hand, recall
that shifts, or “hops”, in the momentum basis are diagonalized in the position basis. For analogous reasons,
𝐇̃𝑦 is a diagonal matrix in the position Fock basis. Furthermore, for position Fock basis state |tt𝑆⟩ described
by the multiset 𝑆 of size 𝓁, the corresponding diagonal entry is ⟨tt𝑆 |𝐇̃𝑦 |tt𝑆⟩ = 𝛾 (𝑆)𝑦 − 1. See eq. (100) for
details. Thus, we see that the diagonal entries of 𝐇̃𝑦 in the position Fock basis are closely related to the
probability that 𝑧 is included in 𝑈 . This relationship allows us to express the effect of querying 𝑈 at 𝑧 in
terms of 𝐇̃𝑦 .

What we will show is that a query to a random 𝑈 according to the prescribed description can be
expressed as an exponential operator in the terms −𝛾 (𝑆)𝑦 , which by the prior relation is an exponential
operator in the terms −𝐇̃𝑦 . Proving this to be true is significantly more challenging, and we save most
of the details for the technical content of this paper. Of the numerous challenges required to prove this
statement, the first is that for a fixed 𝑆 oracle, we need to analyze the result of querying a purification of
the distribution of 𝑈 oracles. This is because evaluating whether the samples guessed by the algorithm are
correct does not require 𝑈 ; therefore, the quantity we are actually interested in studying is the reduced
density matrix on the algorithm’s register and the register of the oracle encoding the 𝑆 oracle – i.e., we
can take the partial trace over the register encoding the 𝑈 oracle. To make calculating this partial trace
easier, we encode queries to the 𝑈 oracle using another compressed oracle. By doing so, we can express

8An astute reader might question why the constants 1/2 and 𝜅 appear. Both of these constants are necessary for our proof
techniques, but are probably not necessary.

15

the action of queries to the 𝑈 oracle on the algorithm and 𝑆 oracle registers in terms of Kraus operators.
These Kraus operators can be defined as a function of 𝐇̃𝑦 for the locations 𝑦 queried by the algorithm.

This in turn leads us to the second challenge: the Kraus operators (formally defined in eq. (87)) will
be exponential functions in −𝐇̃𝑦 . The exponential function appears here because we include 𝑦 ∈ 𝑈 with
probability 1 − e−𝜅𝛾

(𝑆)
𝑦 /2. Recall that our intended goal was to prove that the action of a query can be well

approximated by a polynomial in 𝐇̃𝑦 . However, we can observe from the definition that the values 𝛾 (𝑆)𝑦 can
lie in the range [0, 𝓁]. But, any polynomial approximation of e−𝜅𝛾

(𝑆)
𝑦 that is 𝜀-accurate on the entire region

[0, 𝓁] will require a very large degree — for example, a Taylor series approximation will require degree
Ω(𝓁 log(1/𝜀)). Furthermore, a polynomial of such degree in 𝐇̃𝑦 applied to the initial state will no longer be
a condensate, and we don’t know of techniques for proving sampling upper bounds for states which are
not condensates. The point being that an approximation on the entire range [0, 𝓁] is untenable. However,
it is also unnecessary. Instead, what we observe is that each 𝛾 (𝑆)𝑦 for 𝑦 ≠ 0 is approximately distributed
as the square of a normal Gaussian. Furthermore, since our analysis is, in some sense, computing the
average success probability over all possible (𝑆, 𝑈) pairs, what is actually required is that the polynomial
approximation of the exponential function is good proportional to the distribution over 𝛾 (𝑆)𝑦 . In other
words, since most of the mass is around 1, the polynomial approximation needs to be very strong in this
region, but the approximation can be exponentially bad at large values, as the probability mass of 𝛾 (𝑆)𝑦
is likewise exponentially small. We show that applying “flat” polynomial approximations [BLMT24] to
the exponential function9 developed by Narayanan [Nar24] suffices to give a poly(𝑛, 𝑡, log(1/𝜄))-degree
polynomial that well-approximates the action of a query for our means.

1.9 A characterization of post-query states

We promote this observation to prove that the action of the queries can be approximated to 𝜄-precision by
a polynomial of degree poly(𝑛, 𝑇 , log(1/𝜄)) in the operators 𝐇̃𝑦 . This will prove that the state is close to the
subspace of 𝑟-condensates for 𝑟 = poly(𝑛, 𝑇 , log(1/𝜄)) as each action of the double-momentum hopping
operator 𝐇̃𝑦 will move at most 2 bosons from the 0-momentum subspace.

However, recall that we start with 𝓁 = 2𝑐𝑛 bosons in the 0-momentum mode. Therefore, any poly(𝑛)
query algorithm, in expectation, moves an imperceptible number of the bosons from the 0-momentum
mode. Again, this is the motivation behind the nomenclature choice of “condensate”. Had we been able
to prove that the state was an 𝑟-condensate for 𝑟 ≪ 𝑣, the proof would be over as we could apply an
uncertainty principle. Unfortunately, this is not the case, as the sampler we construct makes 𝑇 = 𝑣𝑡
queries, if we started from a QCMA algorithm that made 𝑡 queries.

What we will be able to prove is that with each query, the probability that the state becomes less “quasi-
even” is negligible in 𝑛. In total, it is very unlikely that the post-query state is not a quasi-even condensate.

9An astute reader might question why we choose to use an exponential function to define the probability of including 𝑦 ∈ 𝑈 .
Indeed, we too spent much time attempting to prove the result without the use of an exponential function. If we had been able
to use a polynomial function, then there would be no need to consider a suitable approximation. However, we were unable to
find a low-degree polynomial that is within [0, 1] on the range [0, 𝓁] and has sufficient signal to provide a QMA algorithm for this
problem. Therefore, we required using the exponential function to guarantee that the probability of including 𝑦 ∈ 𝑈 was well
defined. In turn, this necessitated the use of a flat approximation. We suspect that a truncation function (for example, max{1, 𝜀𝛾 (𝑆)𝑦 }
would have also sufficed, provided there exists a good flat approximation of this function.

16

To understand why this is the case, let us imagine a simplified setting where the algorithm makes a query,
the action on the oracle register is equal to applying the double-hopping operator 𝐇̃𝑦 . This is an obvious
simplification as the operator is not unitary, but ignore this for now. We think of this operator, in words,
as the following operation: pick two random bosons at modes 𝑥 and 𝑥′, shift them to be at 𝑥 ⊕ 𝑦 and
𝑥′ ⊕ 𝑦, and multiply the norm of the state by the number of bosons already at modes 𝑥 ⊕ 𝑦 and 𝑥′ ⊕ 𝑦.
Then it is clear to see that on a condensate (i.e., a state such that the vast majority of bosons are in the
0-momentum mode), the double-hopping operator is almost entirely characterized by its restriction onto
the 0- and 𝑦-momentum modes (i.e., shifting bosons into or out of the condensate). If this really was an
exact characterization, then the state of a quantum algorithm querying this non-physical operation would
have exactly 2 bosons in every momentum mode that was queried by the algorithm, and every non-zero
momentum mode would be perfectly paired up. The real double-hopping operator has some probability
(we bound this by poly(𝑟)/

√
𝓁) on each query to affect a boson that is not in the condensate, but since

this number is negligible compared to the number of queries the algorithm makes, we can prove a strong
bound on the probability that we observe ≪ 𝑣/4 many momentum modes occupied by an odd number of
bosons.

The analysis is not as simple, though, as the exact action of a query is not the double-hopping operator,
but consists of terms looking like the exponential of the double-hopping operator: e−𝜅𝐇̃𝑦 . This presents
new challenges to analyzing the effects of queries, which we resolve by using techniques from perturbation
theory. Having shown that the double-hopping operator mostly does not change the number of odd indices
in the condensate, we interpret it as a small perturbation (i.e., the part of the double-hopping operator that
would change the number of odd indices) added to a large operator (i.e., the part of the double-hopping
operator that preserves the evenness of all entries). Applying the Dyson series for the exponential function
allows us to bound the effect of e−𝜅𝐇̃𝑦 on the number of even entries in a similar manner as before.

1.10 Momentum conservation and boson pairs

One might look at the property of being a quasi-even condensate outlined in the previous subsection and
wonder why it should say anything about the probability that a sampler succeeds at sampling many points
from the oracle. To see this, it will be instructive to think about an analog of Noether’s theorem [Noe18]
to our oracle. In classical mechanics, Noether’s theorem roughly states that conservation laws correspond
to symmetries in a system. In our case, one such conservation law is the total momentum of the system.
In particular, for all 𝑦, the double-hopping operator 𝐇̃𝑦 maps a system with total momentum 0 (where we
define total momentum to use addition over 𝔽2) to a system that also has total momentum 0. Analogous
with classical mechanics, this corresponds exactly to translational invariance. In other words, the state of
the system does not change if we apply the shift operator, Shift𝑥𝑎𝑧Shift𝑥 = 𝑎𝑧⊕𝑥 . Thus, the conservation of
momentum trivially implies a bound on the probability that any algorithm outputs a single point of 𝑆.

However, making this observation about the system as a whole is too brittle on its own to bound the
probability of sampling more than one point. At a proof level, an algorithm that successfully guesses one
point from 𝑆 will change the total momentum of the system by effectively annihilating one of the bosons.
Even worse, an algorithm that queries the entire truth table of 𝑈 would expect to be able to output many
points of 𝑆 given a single point in 𝑆. Thus, we must use a more fine-grained feature of the states of an
algorithm to provide an upper bound on the sampling probability.

17

One way to reconcile this is to make the following observation: translational invariance applies to any
collection of bosons that have 0-total momentum, simply because applying the shift operator corresponds
to applying a phase in the momentum basis, and having 0-total momentum is equivalent to the phases
canceling each other out. Thus, whenever bosons are paired up (i.e., there is another boson in the same
momentum mode), the pair of bosons will obey translational invariance, and (in a loose sense, since all
bosons are identical) the sampler is very unlikely to sample one of the bosons from this pair. This property is
far more robust than the original observation about 0-total momentum, as successfully sampling a boson
affects at most one of the paired up bosons, although our sampler upper bound proof does not use an
inductive argument. This critical observation is the reason why having almost all of the momentum modes
occupied by an even number of bosons allows us to prove a sampler upper bound.

While the intuition that paired up bosons should be hard to find, our proof that algorithms whose
purified states are supported on quasi-even condensates are hard to sample from does not use an inductive
argument. Instead, we directly upper bound the spectral norm of any operator of the form 𝑛𝑧1 …𝑛𝑧𝑣 on the
subspace of quasi-even condensates using the max row 1-norm, and use the quasi-even and condensate
properties to carefully bound the constructive interference that quasi-even condensates can generate.

1.11 Putting it all together

All together, we have argued that the existence of a QCMA algorithm for spectral Forrelation implies
a sampler which morally guesses the positions of bosons given only query access to their momentum
information. We then prove, by considering the query action on the purification of all oracles, that such a
sampler cannot perform well unless it makes a superpolynomial number of queries.

The proof technique described in this paper is the technique we arrived at after considerable research
and challenges. We highlight the challenges at the end of the result in our concluding remarks (Section §14).

2 History of the QMA versus QCMA problem

The question of whether QMA equals QCMA first appeared in the survey of Aharanov and Naveh [AN02]
with the first indication of a separation given by Aaronson and Kuperberg [AK07]. The following is a brief
review of the progress made on the problem since then: An early candidate classical oracle separation was
given by Lutomirski [Lut11], but the candidate lacked a proof. More recently, a number of results have
made progress towards the goal of a classical oracle separation by proving separations under different
restrictions on how the oracle is accessed. Fefferman and Kimmel [FK15] showed a separation assuming
that the oracle is an “in-place permutation oracle”, a non-standard model where the oracle irreversibly
permutes the input state; the resultant object was “less quantum” than a reflection about a Haar-random
state but still inherently quantum. [FK15] also presents the first techniques for proving query lower bounds
for QCMA; they lift an AM lower bound for set size estimation of Goldwasser and Sipser [GS86] to a QCMA

lower bound for set size. Unfortunately, as is the case for many QCMA lower bounds, the same lower bound
will apply for QMA, thereby not providing a separation. The corresponding QMA lower bound for set size
estimation was proven later using Laurent polynomial techniques by Aaronson et. al. [AKKT20]. Future
results starting from Natarajan and Nirkhe [NN24] showed QMA versus QCMA separations for weakened
notions of a prover or verifier. Natarajan and Nirkhe build on the prior works for set size estimation to

18

construct a set size estimation problem with an efficient QMA algorithm by adding graph structure. For
example, [NN24] proved the separation assuming the witness was only a function of some portion of
the oracle – this can be equivalently expressed as a distribution testing problem. Recently, Agarwal and
Kundu [AK25] have shown that one should be cautious when dealing with distributional oracles or unitary
oracles as separations with respect to such oracles may not imply classical oracle separations. Secondly, a
line of work has used quantum advantage relative to unstructured oracles [YZ24] to separate QMA from
QCMA in settings where the quantum verifier was limited: [Liu22, LLPY23] gave a separation assuming
the verifier can only make classical oracle queries, and more recently [BDK24] gave a separation which
allows the verifier to make quantum queries, but assumes the adaptivity of the queries is sub-logarithmic.

Motivated by this seemingly dual requirement of having to apply quantum query complexity tools to
highly structured oracles, a pair of works, by Zhandry [Zha25] (which this work takes some inspiration
from) and Liu, Mutreja, and Yuen [LMY25], showed connections between the QMA versus QCMA prob-
lem and pseudorandomness against quantum adversaries. [LMY25] improved the lower bound analysis
of [NN24] and proposed a conjecture about the pseudorandomness of 𝛿-dense permutations, which, if
proven, demonstrates another classical oracle separation between QMA and QCMA. Previously, [GLLZ21]
proved that the 𝛿-dense conjecture would imply that any quantum algorithm making queries to a random
oracle can be simulated by an efficient classical one, a major open question in quantum query complex-
ity [AA09]. A similar open problem would need to be resolved in order to make the separation in [LMY25]
unconditional. We nevertheless believe that the results and the statistical conjecture of [LMY25] remain in-
teresting, even in light of this result, since proving that the oracle of [LMY25] works to separate QCMA and
QMA (either through their conjecture about 𝛿-dense permutations or by different means) would provide
an alternate oracle separation that sheds light on the Aaronson-Ambainis conjecture.

3 Observations and open questions

1. Black-box separations and the two basis thesis Recently, Ma and Natarajan [MN25] identified a
QMA1-complete family of local Hamiltonians where every term is 6-local and either diagonal in the
standard or Hadamard bases. The collection of local Hamiltonian terms diagonal in the standard basis
forms a constraint satisfaction problem (CSP). Likewise, the local Hamiltonian terms diagonal in the
Hadamard basis form a second CSP. If we let 𝑆 be the solutions to the first CSP and𝑈 the solutions to the
second CSP, Ma and Natarajan’s result can be expressed as the statement: “Deciding 1 vs 1 − 1/poly(𝑛)
spectral Forrelation is QMA1-complete even when 𝑆 and 𝑈 are the solution sets to CSPs”. Previously,
Cubitt and Montanaro [CM16] had proven that the local Hamiltonian problem where all terms are of the
type 𝛼𝑖𝑗𝑋𝑖⊗𝑋𝑗 or 𝛽𝑖𝑗𝑍𝑖⊗𝑍𝑗 is QMA-complete for a completeness-soundness gap of 1/poly(𝑛). However,
Cubitt and Montanaro’s Hamiltonians were necessarily frustrated as they were built from perturbation
theory gadgets.

The result presented here is an oracular variant of these two results. Ma and Natarajan’s result also
shows that it is QMA-complete to decide the 1−1/exp(𝑛) vs 1−1/poly(𝑛) spectral Forrelation problem
even when 𝑆 and𝑈 are the solution sets to CSPs. Whereas this result shows that the problem of deciding
59/100 vs 57/100 spectral Forrelation for general sets 𝑆 and𝑈 is not in QCMA. Therefore, if QCMA were
to equal QMA, our black-box separation concretely says that the QCMA algorithm must depend on the

19

structure of the two CSPs. This is the analog of how the unconstrained search problem lower bound
for BQP [BBBV97] proves that if a BQP algorithm exists for NP, it must depend on the structure of the
CSPs.

Furthermore, our oracle separation does not have perfect completeness, which, to the best of our knowl-
edge, all previous candidate oracle separations did. And we do not know a technique for adapting this
protocol to have perfect completeness, as the state 𝐻⊗𝑛 |𝑆⟩ has some support on every basis vector.

More broadly, our results fall into a larger family of quantum computation results that satisfy the “two-
basis thesis”—that, computationally speaking, it suffices to consider computation or Hamiltonian terms
that are either in the standard or Hadamard basis. Other results that satisfy the two-basis thesis in-
clude the BB84 protocol [BB14], Weisner’s quantum money scheme [Wie83], Aaronson and Christiano’s
money scheme [AC13], the Mermin-Peres magic square game [Mer90, Per90], Mahadev’s measurement
protocols [Mah18], and quantum codes such as the NLTS Hamiltonian construction of Anshu, Breuck-
mann, and Nirkhe [ABN23].

2. Upgrading quantum oracle separations Variations of the Aaronson and Kuperberg [AK07] oracle
are incredibly prevalent in quantum complexity theory and quantum cryptography. Having demon-
strated that we can suitably replace the [AK07] quantum oracle with a classical oracle in this particular
setting, we posit that more results are due for upgrades to classical oracles. In particular, we identify the
question of separating QMA-search from QMA-decision with respect to a classical oracle as incredibly
pertinent; the quantum oracle result was proven by Irani et. al. [INN+21].

3. Cryptographic primitives. More broadly, quantum oracles are equally prevalent in quantum com-
plexity theory and quantum cryptography. For example, many complexity-theoretic and cryptography
separations are proven by means of quantum oracles. One notable example is Kretschmer’s separa-
tion [Kre21] between quantum pseudorandomness and (for example) one-way functions. Very recently,
there has been an explosion of unitary oracle separations separating various notions of quantum cryp-
tography [CCS25, BCN25, BMM+25, GZ25, Bar25, GLMY25, AGL25]. Often, for the cryptographic use
cases, there hasn’t been an easy classical oracle replacement. Can we use the techniques introduced in
this work to make these improvements?

4. The computational complexity of clonability Nehoran and Zhandry [NZ24] introduce the concept
of ClonableQMA, which is the class of decision problems decidable with a quantum witness that is also
efficiently clonable. It is not difficult to see that our proof also extends to separate ClonableQMA from QMA

with respect to a classical oracle, as the sampler generated in Theorem 1.2 can be constructed given the
clonability. The complexity class ClonableQMA was identified as the complexity-theoretic generalization
of many cryptographic tasks that build on the idea that some states are hard to clone while still easy to
verify. Using the constructed oracle separation, can we work backwards and identify new cryptographic
protocols that can be proven secure with respect to a classical oracle?

5. Boolean function analaysis Liu, Mutreja, and Yuen [LMY25] identify an inherent connection between
QMA vs QCMA and the Aaronson-Ambainis conjecture [AA09], a major open question in boolean func-
tion analysis. There are two versions of the Aaronson-Ambainis conjecture: one in terms of the influ-
ence of boolean functions and the other in terms of quantum query algorithms. Our result does not

20

directly address either version of the Aaronson-Ambainis conjecture, but we hope that it might offer a
new interesting perspective with which the problem might be tackled.

6. Matching upper bounds. We’ve shown that spectral Forrelation is hard for QCMA. However, we do
not know what the optimal BQP or QCMA algorithms for this oracle are. Similarly, the problem of sam-
pling points from 𝑆 given oracle access to 𝑆 and 𝑈 (or just 𝑈) seems like an interesting quantum query
complexity problem in its own right. What is the best sampling algorithm for producing 𝑣 problems in
𝑆 from access to both 𝑆 and 𝑈?

7. Proof improvements Lastly, we admit that many of the components of our proof are likely subop-
timal. We made many decisions in our proof that could be modified to make the proof simpler. One
particular decision that stands out is to include an element 𝑦 in the set 𝑈 with probability 1 − e−𝜅𝛾

(𝑆)
𝑦 /2.

Is there a better choice of function that makes the proof simpler? We chose the exponential func-
tion since we could find a family of good polynomial approximations to the functions, and previously
Zhandry [Zha25] used a similar function since it was amenable to integration. However, we do not
know if this was optimal, as it caused other challenges. Other decisions, such as analyzing the bosonic
system in terms of quasi-even condensates, could also be optimized. Is there a better generalization
(instead of quasi-even condensates) for which we can prove sampling probability upper bounds? We
suspect and hope that a simpler reformulation of this proof will be found.

4 Outline of the paper

This paper is broken up into parts. In the remainder of Part I, we introduce relevant notations, definitions,
and formalize the definitions of the complexity classes QMA, QCMA, and oracle separations. We, however,
defer introducing the quantum mechanics of bosons to Section §11 of part III. Next, Part II and Part III
play dual roles to each other, together proving the impossibility of an efficient query algorithm with a
polynomial-sized witness for spectral Forrelation in the property-testing regime. Part II proves that an
efficient QCMA algorithm for the spectral Forrelation problem implies a sampling probability lower bound
for a particular sampling task. Then, Part III proves a strictly smaller sampling upper bound for that task.
These two parts are meant to be self-contained and can be read like separate papers in themselves, although
Part III is significantly longer. Part IV brings together all the important results from the previous parts
to prove a property testing oracle separation which can be lifted to a complexity class separation. We
end Part IV with concluding remarks about how we came to this proof.

5 Preliminaries

Organizational notes Some of the proofs in this paper are naturally lengthy and require smaller tech-
nical/mathematical lemmas to prove. Notationally, we write these required lemmas in inline boxed envi-
ronments. The intention is that a first pass reading of the paper can effectively skip over these lemmas by
only reading the main listed lemmas/theorems in the boxed environments.

21

5.1 Mathematical notation

The following notations are used in this work. Most are standard, but we reiterate them for the sake of
clarity.

• ‖⋅‖ or ‖⋅‖op for a matrix will refer to the operator norm of a matrix, unless specified otherwise, and ‖⋅‖1
denotes the matrix 1-norm, ‖𝑋‖1 = Tr[|𝑋|]. ‖⋅‖ for a vector will refer to the 2-norm unless specified
otherwise.

• When using the notation ∏𝑏
𝑖=𝑎 𝑋𝑖 for 𝑋𝑖 that do not commute, the product expands from left to right

starting from 𝑎. For example, when 𝑎 < 𝑏 , it expands as 𝑋𝑎𝑋𝑎+1…𝑋𝑏 . When 𝑏 < 𝑎, it expands as
𝑋𝑎𝑋𝑎−1…𝑋𝑏 .

• Given a 𝑥 ∈ {0, 1}𝑛, we define 1𝑥 to be the length 2𝑛 tuple with entries indexed by 𝑛-bit strings, with
1 in the index corresponding to 𝑥 , and 0 elsewhere.

• For two functions 𝑓 , 𝑔 ∶ ℕ → ℝ, we say that 𝑓 = 𝑂(𝑔) and 𝑔 = Ω(𝑓) if ∃ 𝑛0 ≥ 0 and 𝑐 > 0 such that
𝑓 (𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

• We employ the notation 𝛿𝑥,𝑦 for the indicator function of 𝑥 = 𝑦 and we also use 𝛿(𝑏) for the indicator
function when 𝑏 is a boolean predicate such as 𝑏 = (𝑥 ∈ 𝐴).

• The binomial function (𝑎𝑏) can be extended naturally to non-integer valued 𝑎. In this paper, we will
only need to use 𝑎 = 1/2. For 𝑏 > 0,

(
1/2
𝑏)

def=
(1/2)(1/2 − 1)(1/2 − 2)⋯ (1/2 − 𝑏 + 1)

𝑏!
. (10)

We also define (1/20)
def= 1. An important fact that we use is that the absolute value of this is always

< 1 for 𝑏 > 0.

Indexing Throughout most of this paper, we will be indexing over the set {0, 1}𝑛; this set is isomorphic to
the set [𝑁] where 𝑁 = 2𝑛 under the lexicographic ordering. It is sometimes convenient to switch indexing
sets between {0, 1}𝑛 and [𝑁] def= {0, … , 2𝑛 − 1} for notational simplicity.

5.2 Quantum query complexity

Quantum query algorithms For this paper, we employ the following definitions of quantum query
circuits/algorithms. These are standard definitions in the literature and are restated here for convenience.
We use the term “an oracle of size 𝑛” to refer to a function  ∶ {0, 1}𝑛 → {0, 1}. This term matches notions
from query complexity. We also use the phrase “an oracle” to refer to a function  ∶ {0, 1}∗ → {0, 1} for a
function mapping arbitrary strings to bits.

Definition 5.1 (Quantum query circuit/algorithm). For this paper, we define a quantum query algorithm
as an inputless quantum circuit that interacts coherently with a boolean oracle function  ∶ {0, 1}𝑛 → {0, 1}.
The oracle is accessed via a phase query gate |𝑏, 𝑥⟩ ⟼ (−1)𝑏⋅(𝑥) |𝑏, 𝑥⟩, which acts on an 𝑛+ 1-qubit query

22

register. The algorithm is described by an alternating sequence of unitaries (drawn from any fixed universal
gate set) and oracle gates. Here 𝑡 denotes the number of oracle queries made by the algorithm and 𝑛 denotes
the size of the boolean oracle function. After all gates are applied, a designated output qubit is measured in
the computational basis to determine acceptance. The initial state is assumed to be all qubits as |0⟩ and all
intermediate unitaries may act on an arbitrary (but finite) number of qubits. This definition naturally extends
to multiple oracles (as will be the use case in this paper).

This model captures the standard query-complexity viewpoint: there is no explicit input string—only
access to the oracle  of a particular input size 𝑛. Furthermore, we don’t place any restrictions on the
complexity of the interleaved unitaries, and the overall circuit size is not of importance beyond the number
of queries to . We note that the phase query gate described here is equivalent to other standard notions
of oracle access, including the bit-flip oracle |𝑏, 𝑥⟩ ⟼ |𝑏 ⊕ (𝑥), 𝑥⟩.

We note that a pair of functions (𝑆, 𝑈) ∶ {0, 1}𝑛−1 → {0, 1} can be represented as a single function on 𝑛
bits by

(𝑏, 𝑥) =

{
𝑆(𝑥) if 𝑏 = 0 ,

𝑈(𝑥) if 𝑏 = 1 .
(11)

Furthermore, controlled-access to the “combined unitary” can be constructed from controlled-access to
both 𝑆 and 𝑈 . Therefore, for the remainder of this paper (and the statement of Theorem 1.1), we use the
notation of accessing two oracles as it is equivalent and notationally easier to digest.

Definition 5.2 (Quantum query algorithm with witness). A quantum query algorithm may also receive an
auxiliary witness. There are two main types of witnesses we consider.

• A quantum witness is a state |𝜓⟩ on 𝑞 qubits.

• A classical witness is a bit string 𝑤 ∈ {0, 1}𝑞 , treated as a computational-basis state.

The definition is identical to the previous except the input state is now |𝜓⟩ ⊗ |0… 0⟩ or |𝑤⟩ ⊗ |0… 0⟩. The
algorithm’s acceptance probability may depend on both the oracle and the witness.

Quantum complexity theory The previous definitions of quantum query circuits/algorithms are de-
fined in terms of a parameter 𝑛, which specifies the input length for oracle queries. Most of the paper
will involve proving property-testing lower bounds for such algorithms. Only in the end will we need to
reconcile these definitions with quantum complexity theory.

In complexity theory, we are interested in families of quantum algorithms that run on all possible
input sizes. Notationally, 𝑛 is often used as the length of the input, which we want to classify as a yes
or no instance of a decision problem. An oracular complexity class is one defined in terms of a function
 ∶ {0, 1}∗ → {0, 1} (or equivalently a family of functions  ∶ {0, 1}𝑛 → {0, 1} for each integer length 𝑛).

To formally define the quantum complexity classes BQP, QCMA, and QMA, we will need to define
the notion of a uniform quantum oracle algorithm. For the purposes of this result, we will only need to

23

define P-uniform quantum oracle algorithms. This is due to the result of Yao [Yao93], which proved that
quantum complexity classes can be defined in terms of P-uniform families of quantum circuits.

Definition 5.3 (Quantum oracle circuits). We define a family of quantum oracle circuits/algorithms {𝑛}𝑛≥1,
where the index 𝑛 corresponds to the length of the explicit input to the computational problem. Each 𝑛 can
be represented concretely as a quantum circuit consisting of:

• elementary quantum gates drawn from a fixed, complete gate set (for example, Hadamard, phase, and
controlled-NOT),

• oracle phase gates providing coherent access to the Boolean oracles

𝑘 ∶ {0, 1}𝑘 → {0, 1} by |𝑏, 𝑥⟩ ↦ (−1)𝑏⋅𝑘(𝑥) |𝑏, 𝑥⟩ for 𝑥 ∈ {0, 1}𝑘 , 𝑏 ∈ {0, 1} . (12)

This can be viewed as the circuit model definition of accessing  at various lengths.

The family {𝑛} is P-uniform if there exists a deterministic polynomial-time Turing machine 𝑀 that, on
input 1𝑛, outputs a full classical description of the circuit 𝑛. Because 𝑀 runs in time polynomial in 𝑛, the
resulting circuit𝑛 must satisfy the following polynomial bounds for some polynomial functions:

• it takes as input a classical input of size 𝑛 and consists of unitary gates followed by the measurement of
a single qubit for a binary output,

• it contains at most poly(𝑛) gates (either oracle or elementary), and

• the largest length 𝑘 which it can query 𝑘 is at most poly(𝑛).

This ensures that the circuit family represents an efficiently describable quantum algorithm operating within
polynomial resources.

Using the definition of P-uniform quantum oracle algorithms, we define the standard oracle quantum
complexity classes. The natural extension of BQP is the following.

Definition 5.4 (Oracle BQP). A promise language  = (yes,no) ⊆ {0, 1}∗ is in BQP if there exists a
P-uniform family of quantum oracle circuits𝑛 such that for every input 𝑥 of length 𝑛 = |𝑥|,

(Completeness) 𝑥 ∈ yes ⟹ ℙ[
𝑛 (𝑥) accepts] ≥ 2

3 , (13a)
(Soundness) 𝑥 ∈ no ⟹ ℙ[

𝑛 (𝑥) accepts] ≤ 1
3 . (13b)

The pair of constants 2/3 and 1/3 is not important. Standard parallel repetition techniques can be used
to choose different constants or even functions as close as (1/2+1/poly(𝑛), 1/2−1/poly(𝑛)) or as far apart
as (1 − 2−poly(𝑛), 2−poly(𝑛)). Next, we define the generalizations of QCMA and QMA.

Definition 5.5 (Oracle QCMA). A promise language  = (yes,no) ⊆ {0, 1}∗ is in QCMA if there exists
a P-uniform family of quantum oracle circuits 𝑛 with 𝑛 accepting a witness of length 𝑞(𝑛), such that for
every input 𝑥 of length 𝑛 = |𝑥|,

(Completeness) 𝑥 ∈ yes ⟹ ∃ 𝑤 ∈ {0, 1}𝑞(𝑛) s.t. ℙ[
𝑛 (𝑥, 𝑤) accepts] ≥ 2

3 , (14a)
(Soundness) 𝑥 ∈ no ⟹ ∀𝑤 ∈ {0, 1}𝑞(𝑛), ℙ[

𝑛 (𝑥, 𝑤) accepts] ≤ 1
3 . (14b)

24

Definition 5.6 (Oracle QMA). A promise language  = (yes,no) ⊆ {0, 1}∗ is in QMA if there exists
a P-uniform family of quantum oracle circuits 𝑛 with 𝑛 accepting a witness of length 𝑞(𝑛), such that for
every input 𝑥 of length 𝑛 = |𝑥|,

(Completeness) 𝑥 ∈ yes ⟹ ∃ |𝜓⟩ ∈ (ℂ2)⊗𝑞(𝑛) s.t. ℙ[
𝑛 (𝑥, |𝜓⟩) accepts] ≥ 2

3 , (15a)

(Soundness) 𝑥 ∈ no ⟹ ∀ |𝜓⟩ ∈ (ℂ2)⊗𝑞(𝑛), ℙ[
𝑛 (𝑥, |𝜓⟩) accepts] ≤ 1

3 . (15b)

5.3 Sets, multisets, and functions

Throughout the paper, we use the following notation to refer to sets, multisets, and the functions associated
with them.

• Given a multiset 𝑆, we use the notation {𝑥1, … , 𝑥𝓁} to refer to the unordered collection of elements in
𝑆, where the elements 𝑥1, … , 𝑥𝓁 may be non-distinct.

• We abuse notation and take 𝑆(𝑥) to be the indicator function 𝛿(𝑥 ∈ 𝑆), which is 1 if 𝑥 is in 𝑆 with
any multiplicity, and 0 otherwise.

• We will use the notation 𝑆 to refer to the phase oracle for the function 𝑆(⋅), i.e., the unitary that
acts as 𝑆 |𝑏, 𝑥⟩ = (−1)𝑏⋅𝑆(𝑥) |𝑏, 𝑥⟩.

• When applying operations between sets, like 𝑆 ⧵ 𝑇 , we refer to the operation of first mapping 𝑆 and
𝑇 to the set of distinct elements in 𝑆 and 𝑇 respectively, and then outputting the operation applied
to the resulting sets. We also use the notation 𝑇 ⊆ 𝑆 to mean that 𝑇 is a subset of the set of distinct
elements of 𝑆.

• We also define a projector Π𝑆 for a multiset 𝑆 to be the projection onto basis states 𝑥 in 𝑆, treating
𝑆 as a set, i.e., ∑𝑥∈𝑆 |𝑥⟩⟨𝑥|.

• Throughout the paper, we use the terminology “oracle access to a multiset 𝑆” to mean query access
to 𝑆 , and may write an algorithm querying 𝑆 as 𝑆 for brevity. Algorithms may receive access
to multiple multisets, in which case we write (𝑆1,𝑆2).

• We will also write, for a multiset 𝑆 = {𝑠1, … , 𝑠𝓁} ⊆ {0, 1}𝑛, the state |𝑆⟩ = 1√
𝓁 ∑

𝓁
𝑖=1 |𝑠𝑖⟩ in the Hilbert

space (ℂ2)⊗𝑛. Note that when 𝑆 has no multiplicities greater than 1, this is a normalized state, but
otherwise it may be unnormalized. This is as opposed to the state |tt𝑆⟩ in the Hilbert space ℂℤ2𝑛

≥0 , the
classical description of the multiset.

5.4 Spectral Forrelation

Definition 5.7 (Spectral Forrelation). We say two subsets 𝑆, 𝑈 ⊂ {0, 1}𝑛 are 𝛼-spectrally Forrelated if

𝛼 = ‖‖Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆‖‖
2
op = max

‖|𝜓⟩‖=1
‖‖Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 |𝜓⟩‖‖

2. (16)

Here, the projectors Π𝑈 and Π𝑆 are the projectors onto the subspaces spanned by the basis vectors |𝑥⟩ for 𝑥 ∈ 𝑈
and 𝑥 ∈ 𝑆, respectively.

25

Remark 5.8. First note that this definition can be extended to multisets 𝑆 and 𝑈 by taking the set of elements
included in 𝑆 and 𝑈 . In this way, spectral Forrelation is defined to be a property of pairs of multisets as well.

This definition can also be extended to functions/oracles 𝑆, 𝑈 ∶ {0, 1}𝑛 → {0, 1} by taking the sets 𝑆 and 𝑈
to be the pre-images of 1 for the functions 𝑆 and 𝑈 respectively. In this way, spectral Forrelation is also defined
as a property of a pair of oracles.

Remark 5.9. The spectral Forrelation of any two oracles is a number ∈ [0, 1]. By definition, if either oracle is
the constant function 0 (i.e., corresponds to the empty set), then the spectral Forrelation is 0.

In this paper, we will use the notation “at least 𝛼-spectrally Forrelated” to mean that a pair of subsets
are 𝛽-spectrally Forrelated for some 𝛽 ≥ 𝛼, and similarly for “at most 𝛼-spectrally Forrelated”. We will
typically refer to a pair (𝑆, 𝑈) that is at least 59/100-spectrally Forrelated as a yes instance of spectral
Forrelation, and a pair (𝑆, 𝑈) that is at most 57/100-spectrally Forrelated as a no instance.

The following is implicit in [Zha25], but we re-prove it here.

Theorem 5.10 (QMA containment). For any 𝛼 > 𝛽, there is a 𝑂(1/(𝛼 −𝛽)2) quantum query algorithm with
a 𝑛-qubit quantum witness that, given oracle access to oracles 𝑆, 𝑈 ∶ {0, 1}𝑛 → {0, 1}, accepts with probability
at least 2/3 if they are at least 𝛼-spectrally Forrelated (yes instances), and probability at most 1/3 if they are
at most 𝛽-spectrally Forrelated (no instances).

Proof. There is a simple verifier that accepts yes instances with probability ≥ 𝛼 and accepts no instances
with probability ≤ 𝛽: Let |𝜓⟩ be the 𝑛-qubit quantum witness. The following quantum circuit describes
the verifier.

|0⟩ 𝐻 ∙ 𝐻

|0⟩ 𝐻 ∙ 𝐻

|𝜓⟩ 𝑆 𝐻⊗𝑛 𝑈

The verifier accepts if both measurements equal 1. It is easy to check that the probability that both mea-
surements output 1 is exactly ‖Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 |𝜓⟩‖2. By definition, there exists a |𝜓⟩ such that this probability
is ≥ 𝛼 for yes instances and for all |𝜓⟩, this probability is ≤ 𝛽 for no instances. Using the Marriott-Watrous
amplification [MW05], using 𝑂(1/(𝛼 − 𝛽)2) queries, we can convert the verifier into one that decides
spectral Forrelation with completeness-soundness of (2/3, 1/3).

Note that the previous circuit is effectively measuring the input witness with projectors Π𝑆 and 𝐻⊗𝑛 ⋅ Π𝑈 ⋅
𝐻⊗𝑛. The Marriott-Watrous amplification protocol [MW05] will consist of alternating these two measure-
ments and using the classical outputs from the measurements to decide the problem.

26

Part II

From QCMA algorithms to samplers
The goal of Part II is to show that there is a reduction from a QCMA algorithm that decides spectral
Forrelation (i.e., whether two oracles of length 𝑛 are at least 59/100-spectrally Forrelated or at most 57/100-
spectrally Forrelated, given a classical witness), to a sampler such that for all (𝑆, 𝑈) that are at least 59/100-
spectrally Forrelated, the sampler outputs many points from 𝑆, only querying 𝑈 .

Section §6 will describe a general reduction for taking QCMA algorithms that query two oracles and
decide between two families of (pairs of) oracles, and producing samplers that query one of the two oracles.
The reduction will work for families of oracles satisfying a special property. Given a family of yes and no
instances defined on pairs of oracles (𝑆, 𝑈), we say that (𝑆, 𝑈) is a strong yes instance if (𝑆, 𝑈) is a yes
instance, and for any small Δ ⊆ 𝑆, (Δ, 𝑈) is a no instance. This section will show that any QCMA algorithm
that distinguishes between families of pairs of yes and no oracle instances of this problem can be used to
sample points from strong yes instances. Finally, Section §7 shows that if we define yes instances to be
sets (𝑆, 𝑈) that are at least 59/100-spectrally Forrelated, and no instances to be sets (𝑆, 𝑈) that are at most
57/100-spectrally Forrelated, there is a procedure for sampling from a large family of strong yes instances.
These constants (59/100 and 57/100) are artifacts of the proof, and not necessarily fundamental to spectral
Forrelation.

6 Constructing samplers from strong yes instances

Assume the existence of a 𝑡-query quantum query algorithm (𝑆,𝑈) with 𝑞-bit classical witness which
solves the spectral Forrelation problem. Formally, assume the quantum query algorithm (𝑆,𝑈) has the
following properties:

1. (Completeness) If (𝑆, 𝑈) is at least 59/100-spectrally Forrelated, there exists a witness 𝑤 ∈ {0, 1}𝑞

such that (𝑆,𝑈)(𝑤) accepts with probability at least 2/3.

2. (Soundness) If (𝑆, 𝑈) is at most 57/100-spectrally Forrelated, then for all witnesses 𝑤 ∈ {0, 1}𝑞 ,
(𝑆,𝑈)(𝑤) accepts with probability at most 1/3.

In this section, we describe pairs (𝑆, 𝑈) that are at least 59/100-spectrally Forrelated as yes instances
of spectral Forrelation, and pairs (𝑆, 𝑈) that are at most 57/100-spectrally Forrelated as no instances of
spectral Forrelation.

As described in the preliminaries, oracle access to the multisets 𝑆 and 𝑈 can be described as the linear
extensions of the following maps

|𝑏, 𝑥⟩ |𝑧⟩
𝑆↦ (−1)𝑏⋅𝑆(𝑥) |𝑏, 𝑥⟩ |𝑧⟩ , (17a)

|𝑏, 𝑥⟩ |𝑧⟩
𝑈↦ (−1)𝑏⋅𝑈(𝑥) |𝑏, 𝑥⟩ |𝑧⟩ . (17b)

where 𝑏 is a control bit, 𝑥 describes the input to the oracle, and 𝑧 describes the state of the remainder of the
system. The algorithm (𝑆,𝑈) can be thought of starting from a state |𝑤⟩ |0… 0⟩ and applying a sequence

27

of general unitaries interlaced with 𝑡 queries to 𝑆 and 𝑡 queries to 𝑈 . The algorithm (𝑆,𝑈) concludes by
measuring the first qubit in the standard basis.

6.1 Sampling from 𝑆

We can treat the algorithm (𝑆,𝑈) as (𝑈)𝑆 — i.e., an algorithm 𝑈 , consisting of standard unitary gates,
as well as 𝑈 gates, that makes queries the 𝑆 oracle. When expressed this way, the state of the algorithm
(𝑈)𝑆 immediately before its final measurement is given by

𝑉𝑡𝑆𝑉𝑡−1𝑆 …𝑆𝑉0 |𝑤, 0⟩ (18)

with the unitaries {𝑉𝑗 } including queries to 𝑈 . Consider the following algorithm, which takes as input a
witness 𝑤 and a set Δ ⊆ {0, 1}𝑛. The algorithm Sampler𝑈 (𝑤, Δ) is a sampler for generating an additional
sample from 𝑆 given a prior subset Δ of found points. Recall that for a multiset 𝑆 and set Δ, we are taking
𝑆 ⧵ Δ to be the set of elements that appear with multiplicity at least 1 in 𝑆 that do not appear in Δ.

Query algorithm Sampler𝑈 (𝑤, Δ):

1. Sample 𝑗 ← {0, … , 𝑡 − 1} uniformly randomly.

2. Compute the state 𝑉𝑗Δ𝑉𝑗−1Δ …Δ𝑉0 |𝑤, 0⟩, where Δ is the unitary defined by

|𝑏, 𝑥⟩ |𝑧⟩
Δ↦ (−1)𝑏⋅𝛿(𝑥∈Δ) |𝑏, 𝑥⟩ |𝑧⟩ . (19)

3. Measure the state in the standard basis for output (𝑏, 𝑥, 𝑧).

4. If 𝑥 ∈ Δ, output the alphabetically first symbol not in Δ. Else, output 𝑥 .

A minor adjustment can be made to ensure that Sampler makes exactly 𝑡 queries to 𝑈 . At a high level,
the idea behind the sampler is that for 𝑈 to distinguish between 𝑆 and Δ, it must be querying points in
𝑆 that are not in Δ, since the oracles 𝑓Δ and 𝑆 are identical outside of those points. We prove the following
claim about Sampler.

Lemma 6.1. Let (𝑆, 𝑈) be a yes instance of the oracle problem (i.e., at least 59/100-spectrally Forrelated). Let
Δ ⊆ 𝑆 be a subset of the set of elements in 𝑆 such that (Δ, 𝑈) is a no instance (i.e., at most 57/100-spectrally
Forrelated). Let𝑤 be a witness that causes the query algorithm to accept (𝑆, 𝑈)with probability at least 2/3.
Then, the algorithm Sampler𝑈 (𝑤, Δ) makes 𝑡 queries to the oracle 𝑈 , no queries to the oracle 𝑆, and produces
a sample from 𝑆 ⧵ Δ with probability at least (1

36𝑡2).

Proof. We begin by defining a sequence of hybrids. Recall that the verification algorithm’s state imme-
diately before its final measurement is given by eq. (18). Let the 𝑗-th hybrid state |ℎ𝑗 (𝑤)⟩ be define as

|ℎ𝑗 (𝑤)⟩
def= 𝑉𝑡𝑆 …𝑆 𝑉𝑗Δ𝑉𝑗−1Δ…𝑉1Δ𝑉0 |𝑤, 0⟩⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

def= |𝜓𝑗 (𝑤)⟩

, (20)

where we call the state ||𝜓𝑗 (𝑤)⟩ the 𝑗-th prefix state. Intuitively, the prefix state ||𝜓𝑗 (𝑤)⟩ corresponds
to running the algorithm  with oracles (Δ, 𝑈) until the (𝑗 + 1)-th query, and the hybrid state |ℎ𝑗 (𝑤)⟩
corresponds to replacing the first 𝑗 queries to the 𝑆 oracle with queries to the Δ oracle.

28

Then, |ℎ0(𝑤)⟩ corresponds to running  on (Δ, 𝑈) up until the final measurement and |ℎ𝑡(𝑤)⟩ corre-
sponds to running  on (𝑆, 𝑈) up until the final measurement. Since (Δ, 𝑈) is a no instance of spectral
Forrelation and (𝑆, 𝑈) is a yes instance of spectral Forrelation, there is a measurement that accepts |ℎ0(𝑤)⟩
with probability at most 1/3 and accepts |ℎ𝑡(𝑤)⟩ with probability at least 2/3, namely to measure the first
qubit in the computational basis. Therefore, we have that

1
3
≤ Tr [|0⟩⟨0| (|ℎ𝑡(𝑤)⟩⟨ℎ𝑡(𝑤)| − |ℎ0(𝑤)⟩⟨ℎ0(𝑤)|)] (21a)

≤
1
2
‖|ℎ𝑡(𝑤)⟩⟨ℎ𝑡(𝑤)| − |ℎ0(𝑤)⟩⟨ℎ0(𝑤)|‖1 (21b)

≤ ‖ |ℎ𝑡(𝑤)⟩ − |ℎ0(𝑤)⟩‖ . (21c)

A proof of these inequalities can be found in e.g. [Wil17]. By the triangle inequality, we have that

1
3
≤ ‖|ℎ𝑡(𝑤)⟩ − |ℎ0(𝑤)⟩‖ (22a)

≤
𝑡
∑
𝑗=1

‖‖ |ℎ𝑗 (𝑤)⟩ − |ℎ𝑗−1(𝑤)⟩‖‖ (22b)

≤
𝑡−1
∑
𝑗=0

‖‖(Δ − 𝑆) |𝜓𝑗 (𝑤)⟩‖‖ (22c)

= 2
𝑡−1
∑
𝑗=0

‖‖Γ |𝜓𝑗 (𝑤)⟩‖‖ where Γ def= ∑
𝑥∈𝑆⧵Δ

|1, 𝑥⟩⟨1, 𝑥| ⊗ id . (22d)

Here, we use the fact that the 𝑗 and (𝑗 + 1)’st hybrids differ only by the oracle query immediately after the
𝑗-th prefix state, and we recall that 𝑆 is the controlled phase flip oracle that applies a sign of −1 when 𝑏 = 1
and 𝑥 ∈ 𝑆, so Δ −𝑆 is exactly twice the projector onto strings of the form |1, 𝑥⟩ for 𝑥 ∈ 𝑆 △ Δ = 𝑆 ⧵ Δ as
Δ ⊆ 𝑆. Here, recall that operations like set minus and symmetric difference act on 𝑆 and Δ as if they were
sets. For each 𝑗 ∈ {0, … , 𝑡 − 1}, express

|𝜓𝑗 (𝑤)⟩ = ∑
𝑥
𝛽(𝑗)𝑥 |𝑥⟩ ⊗ |𝜓𝑗 (𝑥, 𝑤)⟩ for 𝛽𝑥 ∈ ℝ+. (23)

Here, the control bit 𝑏 is captured in ||𝜓𝑗 (𝑥, 𝑤)⟩. Then, using the Cauchy-Schwarz inequality, we have
that,

1
6
≤
𝑡−1
∑
𝑗=0

√
∑
𝑥∈𝑆⧵Δ

(𝛽(𝑗)𝑥)2 ≤
√
𝑡

√
𝑡−1
∑
𝑗=0

∑
𝑥∈𝑆⧵Δ

(𝛽(𝑗)𝑥)2 . (24)

This implies that,

1
36𝑡2

≤
1
𝑡

𝑡−1
∑
𝑗=0

∑
𝑥∈𝑆⧵Δ

(𝛽(𝑗)𝑥)2 . (25)

The right hand side is exactly the probability that Sampler𝑈 (𝑤, Δ) outputs a 𝑥 from 𝑆 ⧵ Δ.

29

6.2 Witness-free sampler

The algorithm Sampler𝑈 (𝑤, Δ) requires a witness 𝑤 to run. Furthermore, conditioned on Sampler𝑈 (𝑤, Δ)
outputting a novel point from 𝑆, we can iterate the sampler to generate multiple points. This generates a
notion of a Cumulative Sampler which also requires a witness. However, we can simply guess the witness
𝑤 at a cost to the success probability of the algorithm:

Query algorithm CumulativeSampler𝑈 :

1. Sample a random 𝑤 ∈ {0, 1}𝑞 .

2. Initialize Δ ← ∅.

3. For 𝑣 rounds, run Sampler(𝑤, Δ)with fresh independent randomness. Append output 𝑥: Δ ← Δ∪{𝑥}.

4. Output the resulting Δ.

Notice that the algorithm CumulativeSampler𝑈 takes no witness as an input. Meaning the same sampler
is producing samples from 𝑆 with the aforementioned probability for every yes instance (𝑆, 𝑈) such that
(Δ, 𝑈) are no instances for small subsets Δ. We formalize this observation in the following theorem.

Theorem 6.2 (Good samplers from QCMA algorithms). Assume there exists a quantum query algorithm
 with classical witness for spectral Forrelation instances such that for instances of size 𝑛,  takes a 𝑞-sized
classical witness and makes 𝑡 oracle queries. Let (𝑆, 𝑈) be a yes instance of spectral Forrelation and 𝑣 ∈ ℕ
be such that (Δ, 𝑈) is a no instance of spectral Forrelation for all subsets Δ ⊂ 𝑆 with |Δ| ≤ 𝑣. There exists a
query algorithm CumulativeSampler (with implicit dependence on 𝑣) such that for CumulativeSampler𝑈 makes
0 queries to 𝑆, 𝑣𝑡 queries to 𝑈 and produces 𝑣 unique samples from 𝑆 with probability at least

≥ 2−𝑞 ⋅ (
1

36𝑡2)

𝑣

. (26)

Proof. Define the following events with respect to the running of CumulativeSampler. Let 𝐺 be the event
that the witness 𝑤 sampled is a good witness for the pair (𝑆, 𝑈). Second, let 𝐸1… , 𝐸𝑣 be the events that
the corresponding guesses are in 𝑆. By construction, the samples are distinct. The probability they are all
correct is

ℙ[𝐸𝑣, … , 𝐸1] ≥ ℙ[𝐺] ℙ[𝐸𝑣, … , 𝐸1|𝐺] (27a)

≥ ℙ[𝐺] ⋅
𝑣

∏
𝑗=1

ℙ[𝐸𝑗 |𝐸𝑗−1, … , 𝐸1, 𝐺] (27b)

≥ 2−𝑞 ⋅ (
1

36𝑡2)

𝑣

. (27c)

Here, we apply Theorem 6.1, which tells us that the probability that the 𝑗-th sample is in 𝑆, conditioned on
the first 𝑗 − 1 samples being in 𝑆 is at least 1

36𝑡2 .

30

7 Strong yes instances for spectral Forrelation

Theorem 6.2 demonstrates that there exists a sampler algorithm with good success probability that, when
given oracle access to the 𝑈 oracle in a yes instance (𝑆, 𝑈) of spectral Forrelation, with the additional
property that (Δ, 𝑈) is a no instance of spectral Forrelation for all subsets Δ ⊂ 𝑆 such that |Δ| ≤ 𝑣, outputs
𝑣 points from 𝑆. We define such yes instances as strong yes instances.

Definition 7.1 (Strong yes instance). For any 𝑡1, 𝑡2, 𝑣 with 𝑡1 < 𝑡2, we will say that a pair (𝑆, 𝑈) is a (𝑡1, 𝑡2, 𝑣)-
strong yes instance if

1. (completeness): (𝑆, 𝑈) are at least 𝑡2-spectrally Forrelated.

2. (soundness): For any subset Δ ⊂ 𝑆 such that |Δ| ≤ 𝑣, (Δ, 𝑈) are at most 𝑡1-spectrally Forrelated.

Intuitively, disproving the consequence derived in Theorem 6.2 will require constructing many strong
yes instances and proving that no small query sampler can be successful for all these yes instances. To
create yes instances, we want to sample a random multiset 𝑆 of size 𝓁, and then construct (with high
probability) a set 𝑈 that is Forrelated with 𝑆. For this, define

𝛾 (𝑆)𝑦 =
(

1√
𝓁
∑
𝑖∈[𝓁]

(−1)𝑦⋅𝑠𝑖
)

2

=
1
𝓁
∑
𝑖,𝑗
(−1)𝑦⋅(𝑠𝑖+𝑠𝑗) = 1 +

1
𝓁
∑
𝑖≠𝑗

(−1)𝑦⋅(𝑠𝑖+𝑠𝑗) . (28)

Observe that 𝛾 (𝑆)𝑦 equals 2𝑛 ⋅ | ⟨𝑦|𝐻⊗𝑛|𝑆⟩|2, where |𝑆⟩ is the superposition over 𝑆, weighted by the multi-
plicities of the elements, divided by

√
𝓁. When 𝑆 is a set (i.e., has no multiplicities that are not 0 or 1),

this is a normalized state, but if it is a multiset it may not be normalized. The following lemma proves
that there exists a distribution that is overwhelmingly supported on strong yes instances. In conjunction
with Theorem 6.2, it gives that a QCMA algorithm implies a sampler for a particular distribution. In the
next section (Section §11), we will prove that such a sampler cannot exist.

Definition 7.2 (The Strong distribution). Let the distribution Strong𝜅 over pairs (𝑆, 𝑈) be defined by

(a) sampling the multiset 𝑆 = {𝑠1, … , 𝑠𝓁} of size 𝓁 by sampling each 𝑠𝑖 uniformly randomly from {0, 1}𝑛,

(b) followed by, sampling a set 𝑈 by adding each point 𝑦 ∈ {0, 1}𝑛 ⧵ {0𝑛} to 𝑈 with probability 1− e−𝜅𝛾
(𝑆)
𝑦 /2

where 𝛾 (𝑆)𝑦 is defined in eq. (28).

The distribution Strong = Strong𝜅 can also be seen as a distribution over oracle pairs (𝑆, 𝑈) by considering the
indicator oracles for the multisets.

Note that in the distribution Strong𝜅, 𝑈 is always a set, even though 𝑆 may be have multiplicities.
Second, observe that the point 𝑦 = 0𝑛 has a corresponding probability of 1 − e𝜅𝓁/2 which is an invariant
irrespective of the instance. Therefore, querying 𝑦 provides no information for a verification algorithm
about the instance that it couldn’t have achieved by flipping a coin.

31

Lemma 7.3 (The strong yes property). For all 𝜅 ∈ [0, 1], 𝜌 ≥ 0 such that 𝑡1 < 𝑡2 in eq. (30), a pair (𝑆, 𝑈)
sampled ∼ Strong𝜅 is a (𝑡1, 𝑡2, 𝑣)-strong yes instance, except with probability at most

𝓁62−𝑛 + 2𝓁2exp(−
𝜌22𝑛

2𝓁2), (29)

where

𝑡1 =
1 + 𝜅
2

+
𝑣
𝓁
+ 𝜌 , (30a)

𝑡2 =
1 + 3𝜅

2
−
15𝜅2

4
−
5𝜅
𝓁

− 𝜌 . (30b)

In particular, if 500 ≤ 𝓁 ≪ 2𝑛/6, by setting 𝜌 = 2𝓁2
2𝑛 ln (2𝑛

2𝓁4) such that 2𝓁2exp(−
𝜌22𝑛
2𝓁2) = 𝓁62−𝑛 and choos-

ing 𝜅 = 1/10, and we have that except with probability at most 2𝓁62−𝑛, (𝑆, 𝑈) is a (57/100, 59/100, 𝓁/100)-
strong yes instance10. Further note that for some choices of 𝜅, 𝜌, for example, when 𝑡1 ≥ 1 and 𝑡2 ≤ 0, the
lemma trivially holds, and when 𝑡1 ≥ 𝑡2, it is not very useful. Before we give the proof of Lemma 7.3, we
remark on the choice of adding 𝑦 with probability a function of 𝛾 (𝑆)𝑦 .

Remark 7.4. It is important that the oracle 𝑈 is constructed to have 𝑦 added with probabilities that are
functions of 𝛾 (𝑆)𝑦 = 2𝑛| ⟨𝑦|𝐻⊗𝑛|𝑆⟩|2. For certain choices of 𝑈 where the probability of including 𝑦 in 𝑈 is a
function of ⟨𝑦|𝐻⊗𝑛|𝑆⟩, or in particular its sign, there are ways to synthesize the state |𝑆⟩ using oracle access
to 𝑈 , see e.g. [INN+21].

Proof of Lemma 7.3. For a list 𝑆 = {𝑠1, … , 𝑠𝓁} and a positive integer 𝑘, we say an equation 𝑠𝑖1 ⊕…⊕𝑠𝑖2𝑘 = 0𝑛

is “trivial” if the index multiset {𝑖1, … , 𝑖2𝑘} contains each index with even multiplicity. Notice that such
trivial equations hold independent of the values of 𝑠𝑖. We say that 𝑆 is “good” if for 𝑘 = 1, 2 or 3, the only
identities 𝑠𝑖1 ⊕ … ⊕ 𝑠𝑖2𝑘 = 0𝑛 that hold are the trivial identities.

Claim 7.5. Except with probability 𝓁6/2𝑛 over the choice of random 𝑆 of size 𝓁, 𝑆 is good. Observe that a
consequence of 𝑆 being good is that the set contains no multiplicities.

Proof. There are at most 𝓁6 + 𝓁4 + 𝓁2 equations we need to consider. Since we only need to handle non-
trivial equations, it is actually straightforward to bound the number of non-trivial equations of 2, 4, 6
terms by the number of ways to choose 2, 4 or 6 elements from 𝑆, which we can then upper bound as
(𝓁6) + (𝓁4) + (𝓁2) ≤ 𝓁6. For each non-trivial equation, over the choice of random 𝑆, the value of 𝑠𝑖1 ⊕⋯⊕ 𝑠𝑖2𝑘
is just a random element in {0, 1}𝑛. As such, the probability that the non-trivial equation holds is exactly
2−𝑛. Union-bounding over all non-trivial equations gives the claim.

Since the probability that 𝑆 is not good is very small, we will only calculate the probability that (𝑆, 𝑈)
is a strong yes instance conditioned on 𝑆 being good. For a matrix 𝑀 and a subset Δ, let 𝑀[Δ] denote
the principal submatrix of 𝑀 obtained by discarding all rows and columns outside of Δ. Let 𝑀𝑆,𝑈 =
Π𝑆 ⋅ 𝐻⊗𝑛 ⋅ Π𝑈 ⋅ 𝐻⊗𝑛 ⋅ Π𝑆 . Notice that all the rows and columns of 𝑀𝑆,𝑈 indexed by 𝑥 ∉ 𝑆 will be 0, so with
a slight abuse notation, we will think of 𝑀𝑆,𝑈 as the the sub-matrix of 𝐻⊗𝑛 ⋅ Π𝑈 ⋅ 𝐻⊗𝑛.

10We emphasize that the constants here are not particularly important; any 𝑡2 > 𝑡1 + 1/poly(𝑛) would have sufficed.

32

Completeness then corresponds to showing that the largest eigenvalue of𝑀𝑆,𝑈 is ≥ 𝑡2. To prove this, it
suffices to construct a state |𝜓⟩ such that ⟨𝜓|𝑀𝑆,𝑈 |𝜓⟩ ≥ 𝑡2. We use |𝜓⟩ equaling the uniform superposition
over 𝑆. Soundness, on the other hand, corresponds to proving that ‖𝑀𝑆,𝑈

[Δ] ‖ ≤ 𝑡1 for any subset Δ ⊆ 𝑆 s.t.
|Δ| ≤ 𝑣.

Let 𝑀𝑆 = 𝔼𝑈 [𝑀𝑆,𝑈] where the expectation is over 𝑈 sampled based on 𝑆. We will use concentration
statements to relate the maximal eigenvalues of 𝑀𝑆,𝑈 and its principal submatrices to those of 𝑀𝑆 , which
allows us to focus on 𝑀𝑆 .

Claim 7.6. For all 𝑆, ℙ
𝑈 [max

𝑥,𝑥′
|||𝑀

𝑆
𝑥,𝑥′ − 𝑀

𝑆,𝑈
𝑥,𝑥′

|||] > 𝜌] ≤ 2𝓁2e−𝜌
22𝑛/2.

Proof. Fix 𝑆. For 𝑦 ∈ {0, 1}𝑛, let 𝑈𝑦 denote the random variable which is 1 if 𝑦 ∈ 𝑈 and 0 otherwise. For
𝑥, 𝑥′ ∈ 𝑆, write

𝑀𝑆,𝑈
𝑥,𝑥′ =

1
2𝑛

∑
𝑦∈𝑈

(−1)(𝑥⊕𝑥
′)⋅𝑦 =

1
2𝑛

∑
𝑦∈{0,1}𝑛

(−1)(𝑥⊕𝑥
′)⋅𝑦𝑈𝑦 , (31a)

𝑀𝑆
𝑥,𝑥′ = 𝔼

𝑈
[𝑀𝑆,𝑈

𝑥,𝑥′] =
1
2𝑛

∑
𝑦∈{0,1}𝑛

(−1)(𝑥⊕𝑥
′)⋅𝑦 𝔼

𝑈
[𝑈𝑦] . (31b)

Observe that, since 𝑆 is fixed,𝑀𝑆,𝑈
𝑥,𝑥′ is the sum of 2𝑛 independent (but not identical) random variables with

each ∈ {±2−𝑛}. The independence lets us apply Hoeffding’s inequality, showing that

ℙ
𝑢 [

|||𝑀
𝑆,𝑈
𝑥,𝑥′ − 𝑀

𝑆
𝑥,𝑥′

||| ≥ 𝜌] ≤ 2e−𝜌
22𝑛/2 . (32)

Claim 7.6 follows by union-bounding over all 𝓁2 pairs (𝑥, 𝑥′) ∈ 𝑆2.

Claim 7.7. For any 𝑆, except with probability at most 2𝓁2e−𝜌22𝑛/2𝓁2 over the choice of 𝑈 , we have that:

‖𝑀𝑆,𝑈 ‖ ≥ ‖𝑀𝑆‖ − 𝜌 , (33a)
and for any subset Δ ⊆ 𝑆, ‖𝑀𝑆,𝑈

[Δ] ‖ ≤ ‖𝑀𝑆
[Δ]‖ + 𝜌 . (33b)

Proof. We invoke Claim 7.6 with 𝜌′ = 𝜌/𝓁 to bound |𝑀𝑆,𝑈
𝑥,𝑥′ − 𝑀

𝑆
𝑥,𝑥′ | ≤ 𝜌′ = 𝜌/𝓁 for all 𝑥, 𝑥′, except with

probability 2𝓁2e−𝜌22𝑛/2𝓁2 . Under this condition, by the Gershgorin circle theorema, ‖𝑀𝑆,𝑈 −𝑀𝑆‖op ≤ 𝓁𝜌′ = 𝜌
and ‖𝑀𝑆,𝑈

[Δ] − 𝑀𝑆
[Δ]‖op ≤ |Δ|𝜌′ ≤ 𝓁𝜌′ = 𝜌 for any subset Δ ⊆ 𝑆. Claim 7.7 then follows by the triangle

inequality.

aThe Gershgorin circle theorem states that for a complex 𝑊 = (𝑊𝑥𝑦) matrix, every eigenvalue of 𝑊 lies in the
union of the discs 𝐷(𝑊𝑥𝑥 , 𝑅𝑥) where 𝑅𝑥 = ∑𝑦∶𝑦≠𝑥

||𝑊𝑥𝑦 ||.

It remains to lower-bound ‖‖𝑀
𝑆‖‖op and upper-bound ‖‖‖𝑀

𝑆
[Δ]

‖‖‖op. To do this, we compute approximate matrices
in PSD ordering. Define

𝐴𝑆 def= 𝐻⊗𝑛 ⋅ Diag
[(

1
2
+
𝜅
2
𝛾 (𝑆)𝑦 −

𝜅2

4
(𝛾 (𝑆)𝑦)2)𝑦]

⋅ 𝐻⊗𝑛 , (34a)

𝐵𝑆 def= 𝐻⊗𝑛 ⋅ Diag
[(

1
2
+
𝜅
2
𝛾 (𝑆)𝑦)𝑦]

⋅ 𝐻⊗𝑛 . (34b)

33

Here, the notation Diag[(𝑓 (𝑦))𝑦] denotes the diagonal matrix where for all 𝑦 ∈ {0, 1}𝑛, the (𝑦, 𝑦)’th entry
of the matrix is 𝑓 (𝑦).

Claim 7.8. For any 𝑆 and any subset Δ ⊆ {0, 1}𝑛 (including Δ = {0, 1}𝑛), we have that 𝐴𝑆[Δ] ≼ 𝑀
𝑆
[Δ] ≼ 𝐵

𝑆
[Δ],

and in particular ‖𝐴𝑆[Δ]‖ ≤ ‖𝑀𝑆
[Δ]‖ ≤ ‖𝐵𝑆[Δ]‖.

Proof. Recall that 𝔼𝑈 [Π𝑈] = Diag[(1 − 1
2e

−𝜅𝛾 (𝑆)𝑦)𝑦]. We can use the small Taylor series expansions of e−𝑥
to bound, for all non-negative real 𝑥 ,

1
2
+
𝜅
2
𝑥 −

𝜅2

4
𝑥2 ≤ 1 −

1
2
e−𝜅𝑥 ≤

1
2
+
𝜅
2
𝑥 (35)

for all non-negative real 𝑥 . For diagonal matrices, as PSD ordering is equivalent to the ordering of the
diagonal entries:

Diag
[(

1
2
+
𝜅
2
𝛾 (𝑆)𝑦 −

𝜅2

4
(𝛾 (𝑆)𝑦)2)𝑦]

≼ Diag
[(

1 −
1
2
e−𝜅𝛾

(𝑆)
𝑦

)𝑦]
≼ Diag

[(
1
2
+
𝜅
2
𝛾 (𝑆)𝑦)𝑦]

. (36)

As PSD ordering is preserved under transformations 𝑀 ↦ 𝐶†𝑀𝐶, it follows that 𝐴𝑆 ≼ 𝑀𝑆 ≼ 𝐵𝑆 . As PSD
ordering is also preserved for all principal submatrices, this proves Claim 7.8.

Now we are ready to bound the maximal eigenvalues of (principal submatrices of) 𝐴𝑆 and 𝐵𝑆 and, in turn,
the maximal eigenvalues of 𝑀𝑆 . Recall that for all good 𝑆, all 𝓁 elements in the multiset 𝑆 are distinct and
so are the elements in the sumset 𝑆 ⊕ 𝑆 = {𝑥 ⊕ 𝑦 ∶ 𝑥, 𝑦 ∈ 𝑆.𝑥 ≠ 𝑦}.

Bounding the top eigenvalue of 𝐵𝑆 . For 𝑥 ∈ {0, 1}𝑛, let 𝛿𝑥 be the indicator function for 𝑥 = 0𝑛. Observe
that:

𝐵𝑆𝑥,𝑥′ =
1
2𝑛

∑
𝑦
(−1)(𝑥⊕𝑥

′)⋅𝑦
(
1
2
+
𝜅
2
𝛾 (𝑆)𝑦) (37a)

=
1
2 (

1
2𝑛

∑
𝑦
(−1)(𝑥⊕𝑥

′)⋅𝑦

)
+
𝜅
2𝓁

⎛
⎜
⎜
⎝

1
2𝑛

∑
𝑦
(−1)(𝑥⊕𝑥

′)⋅𝑦 ∑
𝑥0,𝑥′0∈𝑆

(−1)(𝑥0⊕𝑥
′
0)⋅𝑦

⎞
⎟
⎟
⎠

(37b)

=
1
2
𝛿𝑥⊕𝑥′ +

𝜅
2𝓁

∑
𝑥0,𝑥′0∈𝑆

𝛿𝑥⊕𝑥′⊕𝑥0⊕𝑥′0 . (37c)

For diagonal entries 𝑥 = 𝑥′, 𝛿𝑥⊕𝑥′ = 1. Moreover, for diagonal entries 𝛿𝑥⊕𝑥′⊕𝑥0⊕𝑥′0 = 0 unless 𝑥0 = 𝑥′0; there
are exactly 𝓁 such cases since 𝑆 is good. Thus, the diagonal entries all equal 𝐵𝑆𝑥,𝑥 = 1

2 +
𝜅
2 . Meanwhile, for

off-diagonal entries 𝑥 ≠ 𝑥′, 𝛿𝑥⊕𝑥′ = 0. Moreover, because 𝑆 is good, 𝛿𝑥⊕𝑥′⊕𝑥0⊕𝑥′0 = 0 except for the two
cases (𝑥0, 𝑥′0) = (𝑥, 𝑥′) or (𝑥′0, 𝑥0) = (𝑥, 𝑥′). Thus, the off diagonal entries all equal 𝐵𝑆𝑥,𝑥′ =

𝜅
𝓁 . Observe, then,

that the matrix 𝐵𝑆[Δ] can be more succinctly expressed as

𝐵𝑆[Δ] = (
1
2
+
𝜅
2
−
𝜅
𝓁)

idΔ +
𝜅|Δ|
𝓁

|Δ⟩⟨Δ| (38)

34

where |Δ⟩ = 1√
Δ ∑𝑥∈Δ |𝑥⟩, the uniform superposition over Δ. |Δ⟩ is thus the top eigenvector. Therefore,

‖‖‖𝐵
𝑆
[Δ]

‖‖‖op =
⟨Δ|𝐵𝑆[Δ]|Δ⟩ ≤

1 + 𝜅
2

+
|Δ|𝜅
𝓁
. (39)

Bounding the top eigenvalue of 𝐴𝑆 . This term is slightly more complicated due to the quadratic term
in 𝛾 (𝑆)𝑦 . We have:

𝐴𝑆𝑥,𝑥′ =
1
2𝑛

∑
𝑦
(−1)(𝑥⊕𝑥

′)⋅𝑦
(
1
2
+
𝜅
2
𝛾 (𝑆)𝑦 −

𝜅2

4
(𝛾 (𝑆)𝑦)2) (40a)

= 𝐵𝑆𝑥,𝑥′ −
𝜅2

4𝓁2
⎛
⎜
⎜
⎝

1
2𝑛

∑
𝑦

∑
𝑥0,𝑥1,𝑥′0,𝑥′1

(−1)(𝑥⊕𝑥
′)⋅𝑦(−1)(𝑥0⊕𝑥

′
0)⋅𝑦(−1)(𝑥1⊕𝑥

′
1)⋅𝑦

⎞
⎟
⎟
⎠

(40b)

= 𝐵𝑆𝑥,𝑥′ −
𝜅2

4𝓁2
∑

𝑥0,𝑥1,𝑥′0,𝑥′1

𝛿𝑥⊕𝑥′⊕𝑥0⊕𝑥′0⊕𝑥1⊕𝑥′1 . (40c)

We have already evaluated 𝐵𝑆𝑥,𝑥′ , and instead focus on evaluating the final term. For diagonal entries 𝑥 = 𝑥′,
since 𝑆 is good, there are only two ways for 𝛿𝑥⊕𝑥′⊕𝑥0⊕𝑥′0⊕𝑥1⊕𝑥′1 = 𝛿𝑥0⊕𝑥′0⊕𝑥1⊕𝑥′1 to be non-zero:

• 𝑥0 = 𝑥′0 and 𝑥1 = 𝑥′1. There are 𝓁2 such terms.

• 𝑥0 ≠ 𝑥′0, and either (𝑥1, 𝑥′1) = (𝑥0, 𝑥′0) or (𝑥′1, 𝑥1) = (𝑥0, 𝑥′0). There are 𝓁 × (𝓁 − 1) × 2 such terms.

This gives a total of 3𝓁2 − 2𝓁 such terms. As a consequence, we have

𝐴𝑆𝑥,𝑥 = 𝐵
𝑆
𝑥,𝑥 −

𝜅2

4𝓁2
(3𝓁2 − 2𝓁) =

1
2
+
𝜅
2
−
3𝜅2

4
+
𝜅2

2𝓁
. (41)

For off-diagonal entries 𝑥 ≠ 𝑥′, the only way for 𝑥 ⊕𝑥′⊕𝑥0⊕𝑥′0⊕𝑥1⊕𝑥′1 to be 0 is for one of 𝑥0, 𝑥′0, 𝑥1, 𝑥′1
to be 𝑥 , another to be 𝑥′, and the remaining two must be equal. This again follows from the goodness of 𝑆.
There are 4×3 ways of choosing which of the four elements are equal to 𝑥 and 𝑥′, and 𝓁 ways to choose the
remaining pair. This slightly over-counts, since for example (𝑥, 𝑥′, 𝑥0, 𝑥′0, 𝑥1, 𝑥′1) = (𝑥, 𝑥′, 𝑥, 𝑥, 𝑥, 𝑥′) would
be counted 3 times, for 𝑥0 = 𝑥 , 𝑥′0 = 𝑥 and 𝑥′1 = 𝑥 . There are 8 terms of this form (4 where there is one 𝑥′

and 3 𝑥 among (𝑥0, 𝑥′0, 𝑥1, 𝑥′1), and 4 where there is one 𝑥 and 3 𝑥′). Each term of this form is over-counted
2 extra times (for a total of 3 times). The correct number of terms with 𝑥 ⊕ 𝑥′ ⊕ 𝑥0 ⊕ 𝑥′0 ⊕ 𝑥1 ⊕ 𝑥′1 = 0 is
therefore: 12𝓁 − 16. This means the off-diagonal entries are equal to:

𝐴𝑆𝑥,𝑥′ = 𝐵
𝑆
𝑥,𝑥′ −

𝜅2

4𝓁2
(12𝓁 − 16) =

𝜅
𝓁
−
3𝜅2

𝓁
+
4𝜅2

𝓁2
. (42)

Similar to the calculation for 𝐵𝑆Δ,

𝐴𝑆 = [
1
2
+ 𝜅(

1
2
−
1
𝓁)

+ 𝜅2(−
3
4
+

7
2𝓁

−
4
𝓁2)]

id𝑆 + [𝜅 − 3𝜅2 +
4𝜅2

𝓁] |𝑆⟩⟨𝑆| . (43)

Therefore, the top eigenvector is indeed |𝑆⟩ and

‖‖𝐴
𝑆‖‖op = ⟨𝑆|𝐴𝑆 |𝑆⟩ (44a)

35

=
1
2
+ 𝜅(

3
2
−
1
𝓁)

+ 𝜅2(−
15
4

+
15
2𝓁

−
4
𝓁2)

(44b)

≥
1
2
+
3𝜅
2

−
15𝜅2

4
−
5𝜅
𝓁
. (44c)

Combining the previous Hoeffding’s inequality with these bounds on the spectral norm completes the
proof.

36

Part III

A sampling probability upper bound
The proof components in Part II combine to prove the existence of a QCMA algorithm for spectral For-
relation implies sampling probability lower bound. More specifically, Section §6 showed how to trans-
form a QCMA algorithm for deciding between yes (at least 59/100-spectrally Forrelated) and no (at most
57/100-spectrally Forrelated) instances into a successful sampler that samples points from strong yes in-
stances, and Lemma 7.3 in Section §7 constructed a distribution Strong𝜅 which is, with overwhelming
probability, supported on strong yes instances. For the rest of the paper, we will choose 𝜅 = 1/10 and use
Strong = Strong1/10 for brevity.

Together, we have proven that if there exists a QCMA decision algorithm, then there exists a lower
bound on the success probability of a sampler at guessing points from 𝑆 given query access to 𝑈 when
(𝑆, 𝑈) is sampled according to the definition of Lemma 7.3. The remainder of the proof is to marry this prob-
ability lower bound with a contradictory probability upper bound. In this section, we will use compressed
oracle/purification techniques defined in terms of bosons. The main theorem for Part III is Theorem 9.1,
and it will be stated after we introduce the bosonic framework in Section §8.

Before starting, we would like to emphasize that the proofs and bounds we generate are almost cer-
tainly far from tight. We will loosely bound terms for legibility, and we acknowledge that the resulting
bounds will not be tight. Nevertheless, they will be sufficient to contradict Theorem 6.2.

8 Quantum mechanics of bosons

As stated in the Introduction, our proof will require understanding purifications of quantum oracles as
bosonic systems. This section will provided the facts and definitions needed to understand the rest of the
proof. For the purposes of this note, it suffices to consider a bosonic system with 2𝑛 modes with the modes
indexed by 𝑛-bit vectors. For notational convenience, it is also useful to be able to index the modes with
{0, … , 2𝑛 − 1} under the standard isometry. In particular we refer to the 0𝑛-mode as the 0-mode.

8.1 A natural basis

The bosonic (position) Fock basis is a collection of orthonormal states of the form |𝓁0, 𝓁1, … , 𝓁2𝑛−1⟩ with each
𝓁𝑥 ∈ ℕ. This is the basis state corresponding to 𝓁0 bosons in the 0-mode, 𝓁1 bosons in the 1-mode, etc. The
total number of bosons is ∑𝑥 𝓁𝑥 .

We will exclusively consider states with 𝓁 total bosons; however, it is mathematically helpful to be able
to add and remove bosons at will to describe the transformation from one state of 𝓁 bosons to another.

8.2 The second quantization

Let |vac⟩ def= |0, … , 0⟩ be the vacuum state representing 0 bosons in the system. Abiding by the traditional
notation from physics, let 𝑎𝑥 and 𝑎†𝑥 be the annihilation and creation operators for a boson in the 𝑥-th

37

mode, respectively. These are defined by their action on the position Fock basis as follows

𝑎𝑥 |𝓁0, … , 𝓁𝑥 , … , 𝓁2𝑛−1⟩ =
√
𝓁𝑥 |𝓁0, … , 𝓁𝑥 − 1,… , 𝓁2𝑛−1⟩ and, (45a)

𝑎†𝑥 |𝓁0, … , 𝓁𝑥 , … , 𝓁2𝑛−1⟩ =
√
𝓁𝑥 + 1 |𝓁0, … , 𝓁𝑥 + 1,… , 𝓁2𝑛−1⟩ . (45b)

We will refer to these as the annihilation and creation operators for bosons in the position basis. Note
that these operators are not unitary. Very roughly, the factor √𝓁𝑥 corresponds to the fact that the bosons
are indistinguishable and so we do not know which of the 𝓁𝑥 bosons were annihilated. Likewise, for
creation. In calculations about bosons, it is useful to oscillate between the Fock representation and the
creation/annihilation perspective. In physics, the two representations are referred to as first and second
quantizations, respectively.

It follows from the definition of the position creation operator that

1√
∏2𝑛−1
𝑥=0 𝓁𝑥 !

2𝑛−1
∏
𝑥=0

(𝑎†𝑥)
𝓁𝑥 |vac⟩ = |𝓁0, … , … , 𝓁2𝑛−1⟩ . (46)

The commutation relations for bosonic position operators are given by

[𝑎𝑥 , 𝑎†𝑦] = 𝑎𝑥𝑎
†
𝑦 − 𝑎

†
𝑦𝑎𝑥 = 𝛿𝑥𝑦 , [𝑎𝑥 , 𝑎𝑦] = [𝑎†𝑥 , 𝑎

†
𝑦] = 0 . (47)

One may expect all annihilation and creation operators to commute since, for example, annihilating a
boson at 𝑥 seems independent of creating a boson at 𝑦. This is true generally, except for annihilating and
creating at the same mode 𝑥 . Intuitively, the reason for a lack of commutation is that if there are zero
bosons at mode 𝑥 , annihilation actually does nothing since there is nothing to annihilate. This causes
an asymmetry since annihilation-before-creation may have nothing to annihilate, but annihilation-after-
creation will always have something to annihilate.

8.3 A momentum basis

We can also define the annihilation and creation operators in the momentum basis by the Hadamard trans-
form. Note, that this is our computer science interpretation. Usually, the transform from position to mo-
mentum basis is given by the quantum Fourier transform over the group ℤ2𝑛 .

𝑎𝑦
def=

1√
2𝑛

∑
𝑥∈{0,1}𝑛

(−1)𝑥⋅𝑦𝑎𝑥 , (48a)

𝑎†𝑦
def=

1√
2𝑛

∑
𝑥∈{0,1}𝑛

(−1)−𝑥⋅𝑦𝑎†𝑥 . (48b)

The commutation relations for momentum operators can be derived to be the analogs of eq. (47):

[𝑎𝑥 , 𝑎†𝑦] = 𝑎𝑥𝑎
†
𝑦 − 𝑎

†
𝑦𝑎𝑥 = 𝛿𝑥𝑦 , [𝑎𝑥 , 𝑎𝑦] = [𝑎†𝑥 , 𝑎

†
𝑦] = 0 . (49)

Having defined momentum annihilation and creation operators, we can derive that there exists a second
Fock basis that can be used to describe states. This is the momentum Fock basis, and it is a collection of
orthonormal states |𝓁0, 𝓁1, … , 𝓁2𝑛−1⟩ where the integers 𝓁𝑥 describe how many bosons are in each momentum
mode. It is the exact analog of the position Fock basis.

38

8.4 Number operators

Additionally, we can define the position and momentum number operators as 𝑛𝑥
def= 𝑎†𝑥𝑎𝑥 and 𝑛𝑥

def= 𝑎†𝑥𝑎𝑥 ,
respectively. These are diagonal matrices in the position and momentum Fock bases that multiply a Fock
basis state by the number of bosons in the 𝑥’th mode — i.e., 𝑛0 |𝓁0, …⟩ = 𝓁0 |𝓁0, …⟩, hence the name. These
have the following commutation relations with the creation and annihilation operators.

𝑛𝑥𝑎𝑥 = 𝑎†𝑥𝑎𝑥𝑎𝑥 = (𝑎𝑥𝑎†𝑥 − 1)𝑎𝑥 = 𝑎𝑥(𝑎†𝑥𝑎𝑥 − 1) = 𝑎𝑥(𝑛𝑥 − 1) , (50a)
𝑛𝑥𝑎†𝑥 = 𝑎†𝑥𝑎𝑥𝑎

†
𝑥 = 𝑎†𝑥 (1 + 𝑎

†
𝑥𝑎𝑥) = 𝑎

†
𝑥 (1 + 𝑛𝑥) . (50b)

Intuitively, the number of bosons after annihilating is just one less than the number before annihilating
(and vice-versa for creating). We also define the total number operator 𝑁 = ∑𝑥 𝑛𝑥 . One can verify that
𝑁 = 𝑁 .

8.5 A random bosonic setup

A typical problem in (classical) combinatorics might start with “place 𝓁 indistinguishable balls uniformly
randomly into𝑁 boxes”. The quantum mechanical interpretation is to uniformly place 𝓁 bosons into𝑁 = 2𝑛

modes. One exact purification of this setup is to consider the state with 𝓁 bosons in the 0-momentum mode,
which equals

1√
𝓁! (

𝑎†0)
𝓁
|vac⟩ =

1√
𝓁! ⋅ 2𝑛𝓁

∑
𝑥1,…,𝑥𝓁 (

𝓁
∏
𝑖=1
𝑎†𝑥𝑖)

|vac⟩ (51)

with the right side demonstrably equivalent to creating 𝓁 bosons uniformly randomly into the vacuum.
Observe that the

√
𝓁! additional normalization term might seem strange initially; however, it is indeed

necessary. Indeed, this is a consequence of the bosons being indistinguishable, and therefore not “know-
ing” the order in which they are created. This results in overcounting, which is fixed by dividing by

√
𝓁!.

Furthermore, suppose we measure this state in the position Fock basis and interpret the measurement as
a multiset. Note that the probability of measuring a particular multiset 𝑆, which contains element 𝑥 , 𝓁𝑥
many times, when measuring eq. (51) can be calculated as

ℙ[𝑆] =
𝓁!

2𝑛𝓁∏𝑥 𝓁𝑥 !
, (52)

which is exactly the uniform distribution over multisets of size 𝓁.

8.6 Bosonic Hilbert space

Bosonic systems on 2𝑛 modes are states in an infinite-dimensional Hilbert space. As there is no bound
on the number of bosons in a bosonic system, this Hilbert space is infinite-dimensional. However, the
Hilbert space can be expressed as the direct sum of finite-dimensional Hilbert spaces by restricting to a
fixed number of bosons:

boson =
∞
⨁
𝓁=0

(𝓁)
boson where (𝓁)

boson = span of Fock states of 𝓁 bosons . (53)

39

Since 𝑁 = 𝑁 , the number of bosons in the position and momentum bases is the same; therefore, the
transformation mapping between the position and momentum Fock bases (i.e., the Hadamard transform)
is block-diagonal with respect to this decomposition.

In this work, we will restrict ourselves to considering bosonic systems with a fixed number, 𝓁, of bosons.
Therefore, the states are in the space (𝓁)

boson. Both the position and momentum Fock bases of this Hilbert
space can be indexed by non-negative integer tuples of length 2𝑛 with total sum 𝓁. Observe that this is
isomorphic to the set of truth-tables of multisets 𝑆 ⊆ {0, 1}𝑛 of size 𝓁. In the rest of the paper, we identify
the states |tt𝑆⟩ with the position Fock basis state with bosons in locations given by the elements of 𝑆.

9 Sampler upper bound statement and organization

This section will state the main theorem of Part III, and give some intuition for how the proof will go, and
the organization of the rest of the part. The goal of Part III is to prove a probability upper bound on the
success of any polynomial query sampler when run on the Strong distribution defined in Definition 7.2. This
is the counterpart to Theorem 6.2, which proves a contradictory lower bound on the success probability,
assuming a QCMA algorithm for spectral Forrelation exists.

9.1 Theorem statement

The main theorem of this part is the following.

Theorem 9.1 (Sampling probability upper bound). For all 𝑣, for all quantum algorithms 𝑈 accessing an
oracle 𝑈 and outputting 𝑣 distinct outputs, while making 𝑡 queries per output, if a pair of oracles (𝑆, 𝑈) are
sampled according to distribution Strong (defined in Definition 7.2), then the probability that all 𝑣 of the outputs
of𝑈 are elements of 𝑆 is at most

≤ 2(
4𝑣((𝑣𝑡)30 + 𝑣(𝑣𝑡)20)

√
𝓁

2𝑛/4)

𝑣

+ ((
(𝑣𝑡)4

𝓁1/32)

𝑣

+ 𝑒−5𝑣𝑡)

2

. (54)

In this theorem, the exponents are not important and are the consequence of loose bounding for legi-
bility. What matters is that for 𝑣, 𝑡 = poly(𝑛) and 𝓁 = 2𝑐𝑛, the numerators are significantly smaller than the
denominators. Therefore, as 𝑣 grows, this quantity decreases exponentially fast. We will actually prove a
slightly stronger statement, namely we will show a bound for any algorithm that first makes 𝑇 queries to
the oracle 𝑈 and then outputs 𝑣 guesses. For 𝑇 = 𝑣𝑡, this is a strictly larger class of algorithms than those
that make 𝑡 queries per guess. The rationale for studying this stronger model is that it natively handles
the complexities of the memory of the algorithm between guesses.

9.2 Proof overview and intuition

As suggested in the Introduction, we will heavily use the bosonic framework to analyze the success proba-
bility of a sampler algorithm. The bosonic framework will be used to analyze a uniform superposition over
the pairs (𝑆, 𝑈) sampled from the Strong distribution defined in Definition 7.2. By considering a uniform
superposition over pairs (𝑆, 𝑈), we can conveniently analyze the average-case success probability of the
sampler.

40

Our proof strategy for proving Theorem 9.1 is reminiscent of ideas introduced by Hamoudi and Mag-
niez [HM23]. We will define a family of subspaces {QEC(𝑟,𝑜)} indexed by positive integers 𝑟 and 𝑜, with
the property that if the state after 𝑇 queries is mostly contained in QEC(𝑟,𝑜) for 𝑟 ≤ poly(𝑛) and 𝑜 ≤ 𝑣/4,
then the success probability bound for the guessing algorithm is enough to prove Theorem 9.1. Once we
have established that states supported on the subspace QEC(𝑟,𝑜) have a low sampling success probability,
we will prove that the state of all 𝑇 -query algorithms querying the purified (𝑆, 𝑈) oracles is supported
almost entirely on the QEC(𝑟,𝑜) subspace for some 𝑟 that is polynomial in 𝑇 . Putting these together we will
have a sampling probability upper bound.

The notation QEC(𝑟,𝑜) refers to something we call a (𝑟, 𝑜)-quasi-even condensate. Informally, a (𝑟, 𝑜)-
quasi-even condensate is a state in the span of momentum Fock states where the number of odd number
operators is ≤ 𝑜 and the number of momentum modes that are non-zero is at most 𝑟 . See the following
remark for more details about this choice of naming.

Remark 9.2 (Nomenclature). We borrow the term condensate from many-body physics, where it denotes a
regime in which amacroscopic fraction of bosons occupy a single-particle mode—typically the zero-momentum
mode—giving rise to collective, mean-field–like behavior. In our setting, we use condensate analogously to indi-
cate that most bosons remain in the zero-momentummode, with only a small number of excitations occupying
other modes. The modifier quasi-even reflects that the occupations across modes are almost parity-symmetric:
only a few modes have odd occupation numbers.

Hence, a quasi-even condensate refers to a subspace of Fock states that are both condensate-like (domi-
nated by the zero-momentum mode) and nearly even under mode-parity. This terminology is not meant in a
thermodynamic sense, but rather as a descriptive analogy capturing the structure of states that remain close
to an even-parity condensate configuration with a few parity defects.

9.3 Organization

We begin by proving a sampling probability upper-bound for quasi-even condensates in Section §10. Then,
in Section §11 we prove how to represent the state of an algorithm that has made a few queries to the oracle
𝑈 when run in superposition over all pairs (𝑆, 𝑈) ∼ Strong (defined in Definition 7.2). Next, in Section §12
we prove that the state of an algorithm that has made polynomial in 𝑛 many queries is a quasi-even
condensate. This proves that we can apply the previously derived sampling probability upper-bound and
completes the proof.

10 Sampler upper bounds for quasi-even condensates

This section will define states that are quasi-even condensates and prove an upper bound on the sampling
success probability of all algorithms whose states are supported on quasi-even condensates. In future
sections, we prove that the post-query state of all polynomial query samplers is close to a quasi-even
condensate.

Recall that the larger goal is to prove an upper bound on the success probability of a query algorithm
on a random instance from Strong (defined in Definition 7.2). We can imagine that the query algorithm is
split into two steps: (a) the first is the 𝑇 queries of interaction with the oracle 𝑈 and (b) the measurement

41

with respect to 𝑆 of the guesses. Interaction with a (𝑆, 𝑈) ∼ Strong can be studied by first purifying the
distribution over oracles and interacting coherently with each pair (𝑆, 𝑈) in superposition. By purifying,
we mean that queries to the oracle 𝑈 are replaced by the linear extension of the unitary

|𝑏, 𝑥, 𝑦⟩ |tt𝑆⟩ |tt𝑈 ⟩ ↦ (−1)𝑏⋅𝑈(𝑦) |𝑏, 𝑥, 𝑦⟩ |tt𝑆⟩ |tt𝑈 ⟩ (55)

where tt(⋅) is our notation for the truth table of the corresponding oracle. Checking the 𝑣 guesses output
by the algorithm is equivalent to measuring the final (entangled) state of the algorithm and oracle with
respect to

Πsucc
def= ∑
𝑧1,…,𝑧𝑣∈({0,1}𝑛)𝑣

distinct

|𝑧1, … , 𝑧𝑣⟩⟨𝑧1, … , 𝑧𝑣 | ⊗ (
∑

𝑆∶𝑧1,…,𝑧𝑣∈𝑆
|tt𝑆⟩⟨tt𝑆 |)

. (56)

The success probability of this sampler over the distribution of random oracles (𝑆, 𝑈) is equal to the proba-
bility that measuring Πsucc on post-query state of the sampler, when run on the purification of the oracles,
accepts. We now define (𝑟, 𝑜)-quasi-even condensates.

Definition 10.1 (Quasi-even condensates). Let 𝑢 = (𝑢𝑥)𝑥∈{0,1}𝑛 be a tuple of non-negative integers such that
∑𝑥 𝑢𝑥 = 𝓁, representing a momentum Fock state of 𝓁 bosons. Then we say that 𝑢 describes an (𝑟, 𝑜)-quasi-even
condensate if

1. (Condensate) 𝑢0 ≥ 𝓁 − 𝑟 . I.e., most of the bosons are in the 0-mode.

2. (Quasi-even) At most 𝑜 many 𝑢𝑥 , except for 𝑢0, are odd.

We define (𝑟, 𝑜)-quasi-even condensates to be any state in the span of momentum Fock states corresponding
to quasi-even condensate tuples, or span{ |𝑢⟩ ∶ 𝑢 is (𝑟, 𝑜)-quasi-even condensate }. We further define QEC(𝑟,𝑜)
to be the projector onto this subspace. Additionally, we define projectors Con𝑟 and QE𝑜 as the projectors onto
𝑟-condensates and 𝑜-quasi-even states, respectively. We also define QE=𝑜 and QE≥𝑜 to be the projectors onto
states with exactly 𝑜 odd 𝑢𝑥 ’s (excluding 𝑢0) and ≥ 𝑜 many odd 𝑢𝑥 ’s (excluding 𝑢0). All of these projectors
are diagonal in the momentum Fock basis and therefore commute. By definition,

QEC𝑟,𝑜 = Con𝑟 ⋅ QE𝑜 = QE𝑜 ⋅ Con𝑟 . (57)

Note that all of the previously defined projectors require a state of exactly 𝓁 bosons. Within this sub-
space, Con0 is the projector onto the state that has all 𝓁 bosons in the 0-momentum mode, i.e., |𝓁, …⟩, and
Con𝓁 is the projector onto all states with 𝓁 bosons. The following theorem is the main result of this section,
which shows a sampling probability upper bound for (𝑟, 𝑣/4)-quasi-even condensates when 𝑟 ≪ 𝓁.

Theorem10.2 (Quasi-even condensate probability upper bound). LetΠsucc be the previously defined success
operator andQEC(𝑟,𝑣/4) be the projector onto (𝑟, 𝑣/4)-quasi-even condensates, which only acts on the S register.
Then,

‖‖QEC(𝑟,𝑣/4) ⋅ Πsucc ⋅ QEC(𝑟,𝑣/4)
‖‖op ≤ 2(

4𝑣(𝑟3 + 𝑣𝑟2)
√
𝓁

2𝑛/4)

𝑣

. (58)

42

The key lemma required to prove Theorem 10.2 is the following. It provides an upper bound on the
success probability of a quasi-even condensate that makes distinct guesses 𝑧1, … , 𝑧𝑣. A priori, Lemma 10.3
may seem strange as it calculates the maximum eigenvalue of a product of number operators on the space
of quasi-even condensates. However, we will prove that this is sufficient for proving an upper bound on
the maximum eigenvalue of Πsucc within the space of quasi-even condensates. This proof will rely on the
fact that the upper bound proven in Lemma 10.3 is independent of the choice of guess locations.

Lemma 10.3. For distinct coordinates 𝑧1, … , 𝑧𝑣 ∈ {0, 1}𝑛,

‖‖QEC(𝑟,𝑣/4) ⋅ 𝑛𝑧1 …𝑛𝑧𝑣 ⋅ QEC(𝑟,𝑣/4)
‖‖op ≤ 2(

4𝑣(𝑟3 + 𝑣𝑟2)
√
𝓁

2𝑛/4)

𝑣

. (59)

We first prove how Lemma 10.3 implies Theorem 10.2 and then finish this section with the proof
of Lemma 10.3.

Proof of Theorem 10.2. Observe that we can reformulate Πsucc as the following:

Πsucc = ∑
𝑧1,…,𝑧𝑣∈({0,1}𝑛)𝑣

distinct

|𝑧1, … , 𝑧𝑣⟩⟨𝑧1, … , 𝑧𝑣 | ⊗ Π𝑧1,…,𝑧𝑣 . (60)

where define Π𝑧1,…,𝑧𝑣 to be the projection onto states |tt𝑆⟩ that have at least one boson in position modes
𝑧1, … 𝑧𝑣. Next, we note that for distinct 𝑧1, … , 𝑧𝑣, the annihilation operators commute and we have that

(𝑎†𝑧1 …𝑎
†
𝑧𝑣𝑎𝑧1 …𝑎𝑧𝑣) = 𝑛𝑧1 …𝑛𝑧𝑣 ≽ Π𝑧1,…,𝑧𝑣 . (61)

This statement is conceptually equivalent to applying Markov’s inequality: that ℙ[𝑋 > 0] ≤ 𝔼[𝑋] for
non-negative random variable 𝑋 . Therefore, it follows that

‖‖QEC(𝑟,𝑣/4) ⋅ Πsucc ⋅ QEC(𝑟,𝑣/4)
‖‖op ≤

‖‖QEC(𝑟,𝑣/4) ⋅ Λsucc ⋅ QEC(𝑟,𝑣/4)
‖‖op (62a)

where Λsucc
def= ∑
𝑧1,…,𝑧𝑣
distinct

|𝑧1, … , 𝑧𝑣⟩⟨𝑧1, … , 𝑧𝑣 | ⊗ (𝑎†𝑧1 …𝑎
†
𝑧𝑣𝑎𝑧1 …𝑎𝑧𝑣) . (62b)

Now we will prove the following bound, applying Lemma 10.3.

‖‖QEC(𝑟,𝑣/4) ⋅ Λsucc ⋅ QEC(𝑟,𝑣/4)
‖‖op ≤ 2(

4𝑣(𝑟3 + 𝑣𝑟2)
√
𝓁

2𝑛/4)

𝑣

. (63)

Consider any state |𝜑⟩ supported on QEC(𝑟,𝑣/4) and write it in its decomposition based on guesses:

|𝜑⟩ = ∑
𝑧1,…,𝑧𝑣

𝛼𝑧1,…,𝑧𝑣 |𝑧1, … , 𝑧𝑣⟩ ⊗ |𝜑𝑧1,…,𝑧𝑣⟩ (64)

where |𝜑𝑧1,…,𝑧𝑣⟩ is the remainder of the state (normalized). Then,

⟨𝜑|Λsucc|𝜑⟩ = ∑
𝑧1,…,𝑧𝑣
distinct

||𝛼𝑧1,…,𝑧𝑣 ||
2 ⋅ ⟨𝜑𝑧1,…,𝑧𝑣 ||𝑛𝑧1 …𝑛𝑧𝑣 ||𝜑𝑧1,…,𝑧𝑣⟩ (65a)

43

≤ max
𝑧1,…,𝑧𝑣
distinct

⟨𝜑𝑧1,…,𝑧𝑣 ||𝑛𝑧1 …𝑛𝑧𝑣 ||𝜑𝑧1,…,𝑧𝑣⟩ (65b)

≤ 2(
4𝑣(𝑟3 + 𝑣𝑟2)

√
𝓁

2𝑛/4)

𝑣

. (65c)

Here, the final line is the application of Lemma 10.3.

It only remains to prove Lemma 10.3, which we prove next.

Proof of Lemma 10.3. Recall that an upper bound on the spectral norm of a Hermitian matrix is the max
1-norm over all rows. Our goal is to study 𝑛𝑧1 …𝑛𝑧𝑣 within the space defined by quasi-even condensates.
So, we restrict our attention to the row indexed by 𝑢 in the momentum Fock basis where 𝑢 is a (𝑟, 𝑜)-quasi-
even condensate tuple. Therefore, the goal is to bound

∑
(𝑟,𝑜)−QEC tuple 𝑤

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩|| (66a)

= ∑
𝑑≥0

⎛
⎜
⎜
⎜
⎜
⎝

∑
(𝑟,𝑜)−QEC tuple 𝑤

|𝑤−𝑢|=2𝑑

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩||

⎞
⎟
⎟
⎟
⎟
⎠

(66b)

≤ ∑
𝑑≥0

⎛
⎜
⎜
⎜
⎝

max
(𝑟,𝑜)−QEC tuple 𝑤

|𝑤−𝑢|=2𝑑

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩||

⎞
⎟
⎟
⎟
⎠

⋅ #
{
𝑤 ∶ (𝑟,𝑜)−QEC tuple 𝑤

|𝑤−𝑢|=2𝑑

}
. (66c)

As the previous equation suggests, we will bound the terms in the previous equation using the following
two claims.

Claim 10.4. Fix two (𝑟, 𝑜)-quasi-even condensate tuples 𝑢, 𝑤 such that |𝑢 − 𝑤| = 2𝑑 with 𝓁 ≥ 2𝑑. Then the
following holds for all distinct 𝑧1, … , 𝑧𝑣 .

|| ⟨𝑢|𝑛𝑧1 …𝑛𝑧𝑣 |𝑤⟩|| ≤
⎧⎪⎪
⎨⎪⎪⎩

𝑣!(2𝑟)𝑣+𝑑/2
𝓁𝑣−𝑑/2

2𝑛𝑣
if 𝑑 ≤ 𝑣,

0 if 𝑑 > 𝑣.
(67)

Proof. Recall that 𝑎𝑧𝑖 = 1√
2𝑛 ∑𝑤(−1)𝑤⋅𝑧𝑖𝑎𝑤 . Then we can write

| ⟨𝑢|𝑛𝑧1 …𝑛𝑧𝑣 |𝑤⟩| = | ⟨𝑢|𝑎†𝑧1 …𝑎
†
𝑧𝑣𝑎𝑧1 …𝑎𝑧𝑣 |𝑤⟩| (68a)

=

|||||||

1
2𝑛𝑣

∑
𝛼1 ,…,𝛼𝑣
𝛽1 ,…,𝛽𝑣

(

𝑣

∏
𝑖=1

(−1)𝑧𝑖 ⋅(𝛼𝑖⊕𝛽𝑖)
)
⟨𝑢|𝑎†𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩

|||||||

(68b)

≤
1
2𝑛𝑣

∑
𝛼1 ,…,𝛼𝑣
𝛽1 ,…,𝛽𝑣

|| ⟨𝑢|𝑎
†
𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩|| . (68c)

44

Next, if 𝑑 > 𝑣, observe that any term in eq. (68c) corresponds to subtracting 1 from momentum modes
𝛽1, … , 𝛽𝑣 , and adding 1 to momentum modes 𝛼1, … , 𝛼𝑣 starting from the quasi-even condensate. Further-
more, the term is non-zero if any only if they correspond to a sequence of additions and subtractions that
map 𝑤 to 𝑢. By assumption, 𝑢 and 𝑤 differ by 2𝑑 > 2𝑣 edits in terms of the 1-norm, and so there is no
sequence of 𝑣 many additions 𝛼1, … , 𝛼𝑣 and subtractions 𝛽1, … , 𝛽𝑣 mapping 𝑤 to 𝑢, and thus every term in
the sum is 0.

Now we switch to the case when 𝑑 ≤ 𝑣. We first bound each of the non-zero terms in the sum. Fix a
choice 𝛼1, … , 𝛼𝑣 and 𝛽1, … , 𝛽𝑣 , and consider the term

||⟨𝑢| 𝑎
†
𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩|| . (69)

As noted before, this is only non-zero if subtracting 1 from the modes 𝛽1, … , 𝛽𝑣 and adding 1 to the modes
𝛼1, … , 𝛼𝑣 maps from the Fock state 𝑤 to 𝑢. To bound the term, we notice that when we apply an annihi-
lation operator to a mode 𝑧, the norm can increase multiplicatively by at most √𝑤𝑧 , and whenever 𝑧 ≠ 0,
we can bound 𝑤𝑧 by 𝑟 , the total number of non-zero bosons. Next, since 𝑤, 𝑢 both are exactly 𝓁 boson
states, at most half of their difference can be accounted for by the 0-mode. Since 𝑤 and 𝑢 differ by 2𝑑,
therefore at least 𝑑 of the combined collection of 𝛽’s and 𝛼’s must be non-zero, meaning at most 2𝑣 − 𝑑
of them can be 0. The ≤ 2𝑣 − 𝑑 annihilation operators corresponding to the 0-mode have operator norm
bounded by

√
𝓁, and the remaining 𝑑 operators are bounded by √

𝑟 (when restricting to the subspace of
(𝑟, 𝑜)-quasi-even condensates). Thus, we have the following upper bound:

||⟨𝑢| 𝑎
†
𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩|| ≤ 𝓁𝑣−𝑑/2𝑟𝑑/2 . (70)

The final step in the proof is to bound the total number of non-zero terms in the sum. To do this, we
make two observations. We first note that we can bound the number of choices of 𝛽1, … , 𝛽𝑣 that correspond
to a non-zero term in the sum by (𝑟+1𝑣). This is because whenever 𝛽𝑖 acts on a mode that is unoccupied in
𝑤, it maps |𝑤⟩ to 0, and there are only 𝑟 + 1 many occupied modes in 𝑤.

Then, we notice that for any 𝑢,𝑤 and 𝛽1, ⋯ , 𝛽𝑣 , there is a unique multiset of creation operators
{𝛼1, ⋯ , 𝛼𝑣} such that ⟨𝑢| 𝑎†𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩ ≠ 0. The number of possible ordered lists of 𝛼1, ⋯ , 𝛼𝑣 is

then at most 𝑣!. Combining our bounds, we have

| ⟨𝑢|𝑛𝑧1 …𝑛𝑧𝑣 |𝑤⟩| ≤
1
2𝑛𝑣

∑
𝛼1 ,…,𝛼𝑣
𝛽1 ,…,𝛽𝑣

|| ⟨𝑢|𝑎
†
𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩|| (71a)

≤
1
2𝑛𝑣

𝓁𝑣−𝑑/2𝑟𝑑/2 ∑
𝛼1 ,…,𝛼𝑣
𝛽1 ,…,𝛽𝑣

𝛿 (||⟨𝑢| 𝑎
†
𝛼1 …𝑎

†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩|| ≠ 0) (71b)

=
1
2𝑛𝑣

𝓁𝑣−𝑑/2𝑟𝑑/2𝑣!(
𝑟 + 1
𝑣) (71c)

≤ 𝑣!(2𝑟)𝑣+𝑑/2
𝓁𝑣−𝑑/2

2𝑛𝑣
. (71d)

Here, we apply our bound on the magnitude of || ⟨𝑢|𝑎†𝛼1 …𝑎
†
𝛼𝑣𝑎𝛽1 …𝑎𝛽𝑣 |𝑤⟩||, then apply our bound on the

number of non-zero terms in the sum, and finally re-arrange terms to get the desired expression.

Next, we prove our second claim, which is an upper bound on the number of quasi-even condensates 𝑤
at distance 2𝑑 from our initial quasi-even condensate 𝑢 for all values of 𝑑. Before proceeding to the proof,
we comment on why this lemma requires some thought.

45

One way to bound the number of quasi-even condensates at distance 2𝑑 from a fixed condensate 𝑢
would be to think about tuples 𝑒 (for “error” relative to 𝑢) with sum 0 and 1-norm 2𝑑 (representing the
distance between 𝑢 and another quasi-even condensate) and upper bound the ways to construct 𝑒. Of
course, simply taking all vectors of norm 2𝑑 would imply an upper bound of ∼ (2𝑛)2𝑑 , i.e., to add 𝑑 units of
positive difference, and 𝑑 units of negative distance to any of the 2𝑛 entries. However, this does not use the
fact that our condensates are mostly paired up. To take advantage of this, we might imagine that we split
𝑒 = 2𝑒even + 𝑒odd, where 𝑒odd is a vector consisting of {−1, 0, +1} entries. Here, we again run into a number
of problems. First, even ignoring 𝑒odd, the number of ways to create 𝑒even is still roughly ∼ (2𝑛)𝑑 (i.e., add
𝑑/2 positive and negative units to the 2𝑛 units), and secondly, there are many choices for 𝑒even and 𝑒odd,
because anytime an entry of 𝑒odd is +1, we can add 1 to the corresponding entry of 𝑒even and switch 𝑒odd
to be −1. To fix these issues requires first noticing that we can only negative units to entries of 𝑢 that are
non-zero, reducing the number of ways to generate 𝑒even to ∼ (2𝑛)𝑑/2 ⋅ 𝑟𝑑/2, and describing a “canonical”
way to assign 𝑒odd. These complications require some careful and lengthy accounting, which the following
claim handles.

Claim 10.5. For every (𝑟, 𝑜)-quasi-even condensate tuple 𝑢 and 𝑑 ≥ 0, the number of (𝑟, 𝑜)-quasi-even
condensate tuples 𝑤 that are at exactly distance 2𝑑 from 𝑢 is upper bounded by

(2𝑛+1)𝑑/2+𝑜(𝑟 + 𝑑/2 + 𝑜)𝑑/2+𝑜 . (72)

Proof. The proof will proceed as follows: We will first define a more abstract counting problem having to
do with placing balls in bins with constraints. We will then show that the answer to this counting problem
upper bounds the number of (𝑟, 𝑜)-quasi-even condensates at distance 𝑑 from 𝑢, and further show that
the answer is upper bounded by eq. (72).

Defining the counting problem. For every tuple 𝑢, define pos(𝑢) to be the indices of 𝑢 that have non-zero
entries. The counting problem that we consider is the number of ways to assign balls into 2𝑛 bins such
that:

1. Each ball is labeled with an integer -2, -1, +1, or +2 and the balls of a particular label are identical.

2. There are exactly ⌊𝑑/2⌋ many +2 and ⌊𝑑/2⌋ many −2 balls, and exactly 𝑜 many +1 and 𝑜 many −1
balls.

3. For any bin outside of pos(𝑢), the sum of the labels of the balls placed in this bin must be ≥ 0.

We first prove that the number of assignments of balls to bins is an upper bound for the number of
(𝑟, 𝑜)-quasi-even condensates at distance 2𝑑 from a given quasi-even condensate 𝑢 by constructing an
injective map from quasi-even condensates to assignments.

Constructing the injective map. Fix a quasi-even condensate 𝑤 at distance 2𝑑 from 𝑢 and let 𝑒 = 𝑤 − 𝑢 be
the entry-wise difference of 𝑢 and 𝑤. Note that because 𝑢 and 𝑤 have the same number of bosons, the
sum of entries of 𝑒 must be 0. Divide 𝑒 into positive and negative components—i.e., such that

𝑒+ ≥ 0, 𝑒− ≥ 0 such that 𝑒 = 𝑒+ − 𝑒−. (73)

46

Define 𝑒even
def= 2 (⌊𝑒+/2⌋ − ⌊𝑒−/2⌋), where operations like the floor and dividing by 2 act entry-wise on the

tuple, and define 𝑒odd
def= 𝑒 − 𝑒even. We first make some remarks about 𝑒even and 𝑒odd. For any entry 𝑒𝑥 ,

(𝑒odd)𝑥 =

{
0 if 𝑒𝑥 is even,
sgn(𝑒𝑥) if 𝑒𝑥 is odd.

(74)

We further note that because we started with two quasi-even condensates, the number of non-zero en-
tries in 𝑒odd is upper bounded by 2𝑜. Finally, we note that the tuple 𝑒even always satisfies |𝑒even| ≤ 2⌊𝑑/2⌋,
meaning that if 𝑑 is not even, 𝑒even accounts for strictly less than 𝑑/2 of the distance between 𝑤 and 𝑢.

Now consider the following assignment of balls to bins. Without loss of generality, assume that the sum
of entries of 𝑒even is ≤ 0; the positive case follows by a similar logic.

1. For each bin 𝑥 , if (𝑒even)𝑥 ≥ 0, add (𝑒even)𝑥/2 many +2 balls to the bin, and if it 𝑒′𝑥 < 0, add (𝑒even)𝑥/2
many −2 balls to the bin.

2. Let 𝑏+ and 𝑏− be the number of +2 and −2 balls assigned in the previous step, respectively. Note,
𝑏+ ≤ 𝑏−. Add ⌊𝑑/2⌋ − 𝑏− many +2 and the same number of −2 balls to the 0-th bin. This assigns all
the −2 balls.

3. 𝑏rem
def= 𝑏− − 𝑏+ ≥ 0 is the number of +2 that have not been assigned (rem stands for “remainder”).

Assign an additional +2 ball to the bins corresponding to the first (in lexicographical ordering) 𝑏rem
entries of 𝑒odd that equal +1. Then, define 𝑒balanced to be equal to 𝑒odd where we subtract 2 from the
entries affected by this step.

4. At this step, 𝑒balanced is a tuple where every entry is ∈ {−1, 0, +1} because the previous step only
subtracts 2 from entries in 𝑒odd that were +1. Furthermore, we have that the sum of entries in
𝑒balanced is 0 and there are at most 2𝑜 many non-zero entries of 𝑒balanced. Thus, there are at most
𝑜′ ≤ 𝑜 many +1 and 𝑜′ many −1 entries of 𝑒balanced. Thus, we can assign 𝑜′ many +1 and −1 balls
according to non-zero entries of 𝑒balanced, and assign the remaining 𝑜 − 𝑜′ many +1 and −1 balls to
the 0-th bin.

One can verify that this is a valid assignment. Finally, if we take the assignment of balls that this pro-
cedure outputs and add up the labels of the balls, we recover the vector 𝑒 = 𝑤 − 𝑢. Since for any two
quasi-even condensates𝑤 and𝑤′, this difference vector can not be the same, we have that our assignment
is injective, and thus the number of assignments upper bounds the number of quasi-even condensates at
distance exactly 2𝑑.

Bounding the combinatorial identity. Now, we upper bound the number of assignments of the balls to bins
using the stars and bars counting tricka. We can over-count this by (𝑎) assigning the +2 and +1 balls to
2𝑛 − 1 bins, and (𝑏) assigning the −2 and −1 balls to the 𝑟 + 1 many bins corresponding to pos(𝑢), as well
as the at most 𝑑/2 + 𝑜 bins that the +2 and +1 balls were assigned to. We have the following bounds on
(𝑎) and (𝑏)

(𝑎) ≤ (

𝑑
2 + 𝑘 + 2𝑛
𝑑
2 , 𝑘, 2𝑛) = (𝑑2 + 𝑘 + 2𝑛)!

(𝑑2)!𝑘!(2𝑛)!
≤ (2𝑛+1)

𝑑
2 +𝑘 ≤ (2𝑛+1)

𝑑
2 +𝑜 (75a)

(𝑏) ≤ (
𝑟 + 1 + 𝑑

2 + 𝑜
𝑟 + 1, 𝑑2 , 𝑜) ≤ (𝑟 + 1 + 𝑑/2 + 𝑜)

𝑑
2 +𝑜 . (75b)

47

Here, we are ignoring the effect of taking ⌊𝑑/2⌋, since it only decreases the quantities. Taking the product
of (𝑎) and (𝑏) upper bounds the number of ways to assign the balls to bins, which completes the proof.

aStars and bars is a combinatorial technique for counting the number of ways to partition 𝑎 identical items (“stars”)
into 𝑏 distinct bins [Wik25]. The number of solutions is (𝑎+𝑏−1𝑏−1). This can be derived by observing that any placement
is equivalent to placing 𝑎 (“stars”) and 𝑏 − 1 “bars” in a row, with the number of stars between two bars denoting the
number of stars to place in the corresponding bin. The identified bijection proves that the number of ways is equal to
selecting 𝑏 − 1 locations for the bars among 𝑎 + 𝑏 − 1.

To finish the proof, we return to eq. (66) to bound ∑(𝑟,𝑜)−QEC tuple 𝑤 || ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩||. We explain the
derivation of each subequation after the statement.

∑
(𝑟,𝑜)−QEC tuple 𝑤

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩|| (76a)

≤ ∑
𝑑≥0

⎛
⎜
⎜
⎜
⎝

max
(𝑟,𝑜)−QEC tuple 𝑤

|𝑤−𝑢|=2𝑑

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩||

⎞
⎟
⎟
⎟
⎠

⋅ #
{
𝑤 ∶ (𝑟,𝑜)−QEC tuple 𝑤

|𝑤−𝑢|=2𝑑

}
(76b)

≤ 𝑣!(2𝑟)𝑣
𝑣
∑
𝑑=0

(2𝑟)𝑑/2
𝓁𝑣−𝑑/2

(2𝑛)𝑣 ((2𝑛+1)𝑑/2+𝑜(𝑟 + 1 + 𝑑/2 + 𝑜)𝑑/2+𝑜) (76c)

= 𝑣!(2𝑟)3𝑣/2(
𝓁
2𝑛)

𝑣

(2𝑛)𝑜
𝑣
∑
𝑑=0(

√
2𝑛+1

𝓁)

𝑑

(𝑟 + 1 + 𝑑/2 + 𝑜)𝑑/2+𝑜 (76d)

≤ 𝑣!(2𝑟)3𝑣/2(
𝓁
2𝑛)

𝑣

(2𝑛)𝑜
𝑣
∑
𝑑=0(

√
2𝑛+1

𝓁)

𝑑

(𝑟 + 1 + 𝑣/2 + 𝑜)𝑑/2+𝑜 (76e)

= 𝑣!(2𝑟)3𝑣/2(
𝓁
2𝑛)

𝑣

(2𝑛)𝑜(𝑟 + 𝑣/2 + 𝑜)𝑜
𝑣
∑
𝑑=0(

√
2𝑛+1

𝓁)

𝑑

(𝑟 + 1 + 𝑣/2 + 𝑜)𝑑/2 (76f)

≤ 2𝑣!(2𝑟)3𝑣/2
𝓁𝑣

(2𝑛)𝑣−𝑜 (

√
2𝑛+1

𝓁)

𝑣

(𝑟 + 1 + 𝑣/2 + 𝑜)𝑣/2+𝑜 (76g)

≤ 22𝑣+1𝑣!(𝑟3𝑣/2)(𝑟 + 1 + 𝑣/2 + 𝑜)𝑣/2+𝑜
𝓁𝑣/2

(2𝑛)𝑣/2−𝑜
. (76h)

Here, to derive eq. (76c), we use the bounds in Claim 10.4 and Claim 10.5. Eq. (76d) factors out the terms
that do not depend on 𝑑, eq. (76e) uses that 𝑑 ≤ 𝑣, and eq. (76f) again factors out terms that do not depend
on 𝑑. Then we observe that the sum in eq. (76f) is a geometric series; since the summand

√
2𝑛+1

𝓁
(𝑟 + 1 + 𝑣/2 + 𝑜) ≥ 2 (77)

and, therefore, the series sums to at most twice the largest term in the series (i.e., when 𝑑 = 𝑣), giv-
ing eq. (76g). Re-arranging terms again gives us the bound in eq. (76h) Setting 𝑜 = 𝑣/4, we finish the
proof, as we have a bound of

‖‖QEC(𝑟,𝑜) ⋅ 𝑛𝑧1 …𝑛𝑧𝑣 ⋅ QEC(𝑟,𝑜)
‖‖op ≤ max

(𝑟,𝑜)−QEC tuple 𝑢
∑

(𝑟,𝑜)−QEC tuple 𝑤

|| ⟨𝑤|𝑛𝑧1 …𝑛𝑧𝑣 |𝑢⟩|| (78a)

48

≤
22𝑣+1𝑣!(𝑟3𝑣/2)(𝑟 + 3𝑣/4 + 1)3𝑣/4𝓁𝑣/2

(2𝑛)𝑣/4
(78b)

≤ 2(
4𝑣(𝑟3 + 𝑣𝑟2)

√
𝓁

2𝑛/4)

𝑣

. (78c)

Here, we use the crude upper bounds 𝑟3/2 ≤ 𝑟2 and 3𝑣/4+1 ≤ 𝑣 to remove the constants in the expression.

11 A compressed oracle for bosonic systems

In this section, we describe a natural compressed oracle technique for a family of random sparse functions,
like 𝑆, and identify a natural basis in which queries to 𝑈 (when (𝑆, 𝑈) are sampled from the distribution
Strong) has a simple purified description in terms of bosonic hopping operators.

11.1 Initial bosonic state

We first need to compute a purification of the choice of multiset 𝑆. As mentioned in the introduction,
one technique is to sample a uniformly random multiset of size 𝓁 is preparing 𝓁 bosons initialized in the
0-momentum mode and then measuring in the position basis. Therefore, a purification of the oracle 𝑆 is
simply 𝓁 bosons in the 0-momentum mode:

1√
𝓁!(
𝑎†0)

𝓁
|vac⟩ . (79)

Space of 𝓁 bosons The bosonic states we consider in this work are of exactly 𝓁 bosons. Therefore, they
live in a subspace of the Hilbert space spanned by Fock states (of either momentum or position variety)
of exactly 𝓁 bosons. Unless specified explicitly otherwise, we will assume that we are considering this
subspace. This will allow us to more easily characterize certain Hamiltonian operators.

11.2 Querying at 𝑦 = 0𝑛

As previously observed, for the Strong distribution, the point 𝑦 = 0𝑛 is included with probability 1 − e𝜅𝓁/2
which is an invariant irrespective of the instance. Therefore, querying 𝑦 provides no information for the
verifier about the instance that they couldn’t have achieved themselves by flipping a coin. Equivalently,
given a verifier that does query at 0𝑛, we can construct a different verifier that never queries at 0𝑛 by
simulating the first verifier and using their own coin of probability 1 − e𝜅𝓁/2 to resolve queries to 0𝑛. This
shift is not drastic, but it will make some of the analysis easier in Section §12. Therefore, henceforth, we
assume we are considering an algorithm which does not query at 𝑦 = 0𝑛.

11.3 Purified state of algorithm and oracle registers

Next, we introduce the purification of the state of a query algorithm querying 𝑈 , where 𝑈 is sampled
from the distribution Strong, Definition 7.2. For this, we will take inspiration from the compressed oracle

49

technique introduced by Zhandry [Zha19]. To construct the compressed oracle, we write out the following
purification of the initial state of the system for both 𝑆 and𝑈 ; we assume the state is expressed on purifying
registers S and U.

|init⟩SU
def=

1√
𝓁!(
𝑎†0)

𝓁
|vac⟩S ⊗ |⊥⟩⊗2

𝑛

U . (80)

Here, U is divided into ⨂𝑦∈{0,1}𝑛 U𝑦 , where each single-qubit register U𝑦 is initially in the state |⊥⟩. We also
define the initial state restricted to the S or U registers,

|init𝑆⟩S
def=

1√
𝓁!(
𝑎†0)

𝓁
|vac⟩S and |init𝑈 ⟩U

def= |⊥⟩⊗2
𝑛

U , (81)

We then define the following isometry acting on registers US:

1
def= ∑

𝑆
|tt𝑆⟩⟨tt𝑆 |S ⊗ ⨂

𝑦∈{0,1}𝑛((

√
1 −

1
2
e−𝜅𝛾

(𝑆)
𝑦 |0⟩ +

√
1
2
e−𝜅𝛾

(𝑆)
𝑦 |1⟩

)
⟨⊥|U𝑦

+
(

√
1
2
e−𝜅𝛾

(𝑆)
𝑦 |0⟩ −

√
1 −

1
2
e−𝜅𝛾

(𝑆)
𝑦 |1⟩

)
⟨⊤|U𝑦)

.

(82)

Note that this is a unitary and only acts on US. Finally, we define a second isometry acting on registers
AU, with A acting as the algorithm’s query register.

2
def= ∑
𝑦∈{0,1}𝑛
𝑏∈{0,1}

∑
𝑈
(−1)𝑏⋅𝑈(𝑦) |𝑏, 𝑦⟩⟨𝑏, 𝑦|A ⊗ |tt𝑈 ⟩⟨tt𝑈 |U . (83)

Then, we have the following:

Lemma 11.1. For all query algorithms,

TrUS [
†
1 ⋅2 ⋅1(|0, init⟩⟨0, init|)] = 𝔼

𝑆,𝑈 [
𝑈 (|0⟩⟨0|)] . (84)

Proof. Since 1 only acts on US, it commutes with the unitaries that  applies. Moreover, the 1 from
one query cancels out the †

1 from the next query. The result is that only the inner-most and outer-most
1 and †

1 are left. Thus, we can rewrite the left side of the equation as

TrUS[†
1 2(|0⟩⟨0| ⊗ 1 |init⟩⟨init|†

1)1] = TrUS[2(|0⟩⟨0| ⊗ 1 |init⟩⟨init|†
1)] . (85)

Then we note that applying 1 to |init⟩ yields exactly the following state:

1 |init⟩ =
1√

𝓁! ⋅ 2𝑛𝓁
∑

𝑠1 ,…,𝑠𝓁∈{0,1}𝑛
⨂
𝑦∈{0,1}𝑛 (

√
1 −

1
2
e−𝜅𝛾 (𝑆)𝑦 |0⟩ +

√
1
2
e−𝜅𝛾 (𝑆)𝑦 |1⟩

)
U𝑦

⊗ 𝑎†𝑠1 …𝑎
†
𝑠𝓁 |vac⟩ . (86)

From here, it is clear to see that tracing out the US register of  yields a random 𝑈 and 𝑆 according to
the distribution Strong, and that  querying 2 yields an identical mixed state to  querying a 𝑈 (where
(𝑆, 𝑈) are sampled according to Strong).

50

Next, we make a simplification to this oracle that gives the oracle a nicer form.

Corollary 11.2. Define the following Kraus operators acting on S, parametrized by 𝑦.

𝐸(𝑦)0
def= ∑

𝑆
(1 − e−𝜅𝛾

(𝑆)
𝑦)|tt𝑆⟩⟨tt𝑆 |S and 𝐸(𝑦)1

def= ∑
𝑆

√
e−𝜅𝛾 (𝑆)𝑦 (2 − e−𝜅𝛾 (𝑆)𝑦)|tt𝑆⟩⟨tt𝑆 |S . (87)

Then define  to be the following unitary acting on registers AUS.

 def= ∑
𝑦∈{0,1}𝑛 ,𝑏∈{0,1}

|𝑏, 𝑦⟩⟨𝑏, 𝑦|A ⊗ (𝑍U𝑦 ⊗ (𝐸
(𝑦)
0)S

+ 𝑋U𝑦 ⊗ (𝐸
(𝑦)
1)S)

𝑏
, (88)

where 𝑋 and 𝑍 are the usual Pauli operators except in the |⊥⟩ and |⊤⟩ basis (as opposed to the |0⟩ and |1⟩
basis). Note the exponent of 𝑏 acting on the unitary applied to the US registers. Then,

TrUS[(|0, init⟩⟨0, init|)] = 𝔼𝑆,𝑈 [𝑈 (|0⟩⟨0|)] . (89)

Proof. Observe that (𝐸(𝑦)0)2 + (𝐸(𝑦)1)2 = id, 0 ⪯ 𝐸(𝑦)0 ⪯ id, and 0 ⪯ 𝐸(𝑦)1 ⪯ id. From Lemma 11.1, for any
algorithm , querying †

1 ⋅ 2 ⋅ 1 is identical to querying 𝑈 after tracing out US. To prove the corollary,
we show that †

1 ⋅ 2 ⋅ 1 is equal to . Writing it out, we will get the following:

†
1 ⋅ 2 ⋅ 1 (90a)

= ∑
𝑆,𝑦

|1, 𝑦⟩⟨1, 𝑦|A ⊗(((1 − e−𝜅𝛾
(𝑆)
𝑦) |⊥⟩ +

√
e−𝜅𝛾 (𝑆)𝑦 (2 − e−𝜅𝛾 (𝑆)𝑦) |⊤⟩) ⟨⊥|U𝑦

+(

√
e−𝜅𝛾 (𝑆)𝑦 (2 − e−𝜅𝛾 (𝑆)𝑦) |⊥⟩ − (1 − e−𝜅𝛾

(𝑆)
𝑦) |⊤⟩) ⟨⊤|U𝑦)

⊗ |tt𝑆⟩⟨tt𝑆 |S

+∑
𝑦
|0, 𝑦⟩⟨0, 𝑦|A ⊗ idUS

(90b)

= ∑
𝑆,𝑦

|1, 𝑦⟩⟨1, 𝑦|A ⊗ ((1 − e−𝜅𝛾
(𝑆)
𝑦) ⋅ 𝑍 +

√
e−𝜅𝛾 (𝑆)𝑦 (2 − e−𝜅𝛾 (𝑆)𝑦) ⋅ 𝑋)

U𝑦

⊗ |tt𝑆⟩⟨tt𝑆 |S

+∑
𝑦
|0, 𝑦⟩⟨0, 𝑦| ⊗ idUS .

(90c)

Here, 𝑍 = |⊥⟩⟨⊥| − |⊤⟩⟨⊤| and 𝑋 = |⊤⟩⟨⊥| + |⊥⟩⟨⊤| are the Pauli 𝑍 and 𝑋 operators in the |⊤⟩ and |⊥⟩ basis.
Direct calculation shows that this unitary squares to the identity as expected. Then we can rewrite this
using the definition of 𝐸(𝑦)0 and 𝐸(𝑦)1 as follows:

†
1 ⋅ 2 ⋅ 1 = ∑

𝑦,𝑏
(|𝑏, 𝑦⟩⟨𝑏, 𝑦|A ⊗ idB) ⊗ (𝑍U𝑦 ⊗ (𝐸

(𝑦)
0)S

+ 𝑋U𝑦 ⊗ (𝐸
(𝑦)
1)S)

𝑏
. (91)

Applying Lemma 11.1 completes the proof.

This implies that we can write the purified state of any algorithm  that only queries 𝑈 in a simple
form. Here we assume the query algorithm can be expressed as a repeating sequence of oracle queries and
unitaries 𝐴A (without loss of generality, we can assume the same unitary 𝐴 is applied each time):

𝐴𝐴…⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇 times

𝐴 |0⟩A |init⟩US (92)

51

where there are 𝑇 queries to the oracle 𝑈 . The query access to controlled-𝑈 described by eq. (88) can be
further abbreviated as

 = ∑
𝑦∈{0,1}𝑛
𝑏∈{0,1}

|𝑏, 𝑦⟩⟨𝑏, 𝑦|A ⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
𝑥∈{0,1}

(𝑍1−𝑥 + 𝑋𝑥)U𝑦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
def=(𝐾𝑥)U𝑦

⊗(𝐸(𝑦)𝑥)S

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝑏

, (93)

where we define 𝐾𝑥 for notational simplicity. Note the exponent 𝑏 in the large parenthetical. Then, an
alternating sequence of algorithm and queries can be calculated as follows. Given 𝐲 = (𝑦1, … , 𝑦𝑇), 𝐛 =
(𝑏1, … , 𝑏𝑇), let 𝐲𝐛 = (𝑦𝑖 ∶ 𝑏𝑖 = 1) be the ordered tuple of length |𝐛| def= ∑𝑖 𝑏𝑖 corresponding to indices of 𝐲
where 𝐛 is 1, with 𝑦𝐛𝑖 being the 𝑖’th entry of this tuple. Then given 𝐱 = (𝑥1, … , 𝑥|𝐛|), define the abbreviations:

(𝐾𝐱)𝐲,𝐛
def=

|𝐛|

∏
𝑖=1

(𝐾𝑥𝑖)U𝑦𝐛𝑖
, 𝐸(𝐲,𝐛)𝐱

def=
|𝐛|

∏
𝑖=1
𝐸(𝑦

𝐛
𝑖)

𝑥𝑖 , 𝐴𝐲,𝐛
def=

1
∏
𝑖=𝑇

𝐴 ⋅ |𝑏𝑖, 𝑦𝑖⟩⟨𝑏𝑖, 𝑦𝑖| . (94)

Then, the post-query state will be

|𝜓PQ⟩ = |𝜓Post−Query⟩
def= ∑

𝐲∈[𝑁]𝑇
𝐛∈{0,1}𝑇

⎡
⎢
⎢
⎣
(𝐴𝐲,𝐛)A ⊗

⎛
⎜
⎜
⎝

∑
𝐱∈{0,1}|𝐛|

(𝐾𝐱)𝐲,𝐛 ⊗ 𝐸(𝐲,𝐛)𝐱

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
𝐴 |0⟩A |init⟩US . (95)

The abbreviated notation will prove itself useful when we start approximating the oracle queries with
polynomials. Note that in the rest of the section, we drop the register indices when they are clear from
context, and whenever an operator acts as identity on a register, we omit the ⊗id part of the operator.
Having developed an expression for the state after applying 𝑇 queries, we now press forward and study
how the post-query state (expressed in eq. (95)) is almost entirely supported on quasi-even condensates.
This will be the content of the next section. By doing so, we can appeal to Theorem 10.2 to conclude a
probability upper bound.

11.4 Action of the oracle in the momentum basis

We see that  consists of Kraus operators 𝐸(𝑦)0 and 𝐸(𝑦)1 that can be thought of as functions of a map
|tt𝑆⟩ ↦ 𝛾 (𝑆)𝑦 |tt𝑆⟩. We now examine the action of this map directly before examining the action of . By
doing so, we will build a natural framework for understanding how to study maps that are more complex
functions of 𝛾 (𝑆)𝑦 such as |tt𝑆⟩ to either 𝐸(𝑦)0 |tt𝑆⟩ or 𝐸(𝑦)1 |tt𝑆⟩. This action, perhaps surprisingly, has a natural
interpretation in the momentum space. To see this, we define the “single 𝑦-momentum hopping operator”
𝐆̃𝑦 and the “double 𝑦-momentum hopping operator” 𝐇̃𝑦 as11:

𝐆̃𝑦
def=

1√
𝓁

∑
𝑥∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎𝑥 . (96a)

11We use normalized versions of the single and double 𝑦-momentum hopping operators. This is because we are only considering
systems of 𝓁 bosons. A situation with a variable number of bosons might use the definitions without the 1/

√
𝓁 and 1/𝓁 constants,

respectively.

52

𝐇̃𝑦
def=

1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎
†
𝑥′⊕𝑦𝑎𝑥𝑎𝑥′ . (96b)

We also refer to these as single-hopping or double-hopping operators when 𝑦 is clear from context. (In this
work, we never use the analogous position hopping operators.) Morally, for a bosonic system |𝜓⟩, we can
interpret 𝐆̃𝑦 as adding momentum 𝑦 (in superposition) to each boson and 𝐇̃𝑦 |𝜓⟩ as adding momentum 𝑦
(in superposition) to each pair of bosons. Observe that action by 𝐇̃𝑦 |𝜓⟩ increases the momentum of the
entire system by 2𝑦 = 0. Therefore, the total momentum of the system is conserved under any function of
𝐇̃𝑦 . Second, note that the single- and double-momentum hopping operators are related:

𝐆̃2
𝑦 =

1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎𝑥𝑎
†
𝑥′⊕𝑦𝑎𝑥′ (97a)

=
1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝑎†𝑥⊕𝑦(𝑎
†
𝑥′⊕𝑦𝑎𝑥 + 𝛿𝑥,𝑥′⊕𝑦)𝑎𝑥′ (97b)

=
1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎
†
𝑥′⊕𝑦𝑎𝑥𝑎𝑥′ +

1
𝓁

∑
𝑥∈{0,1}𝑛

𝑎†𝑥𝑎𝑥 (97c)

= 𝐇̃𝑦 +
𝑁
𝓁
. (97d)

Within the subspace of 𝓁 bosons,

𝐆̃2
𝑦 = 𝐇̃𝑦 + id. (98)

We prove the following lemma relating the hopping operators to the map |tt𝑆⟩ ↦ 𝛾 (𝑆)𝑦 |tt𝑆⟩.

Lemma 11.3 (Single hopping twice applies 𝛾 (𝑆)𝑦). For all 𝑦 ∈ {0, 1}𝑛, the following holds.

𝐆̃2
𝑦𝑎

†
𝑠1 …𝑎

†
𝑠𝓁 |vac⟩ = 𝛾

(𝑆)
𝑦 𝑎†𝑠1 …𝑎

†
𝑠𝓁 |vac⟩ . (99)

Proof. We can directly compute the action of 𝐆̃𝑦 on a position basis state to relate it to 𝛾 (𝑆)𝑦 .

𝐆̃𝑦𝑎†𝑠1 …𝑎
†
𝑠𝓁 |vac⟩ =

1√
𝓁

∑
𝑥∈{0,1}𝑛

𝑎†𝑥⊕𝑦𝑎𝑥𝑎†𝑠1 …𝑎
†
𝑠𝓁 |vac⟩ (100a)

=
1√
𝓁𝑁 𝓁

∑
𝑥∈{0,1}𝑛

∑
𝑡1,…,𝑡𝓁

(−1)𝑡1 ⋅𝑠1+…+𝑡𝓁 ⋅𝑠𝓁𝑎†𝑥⊕𝑦𝑎𝑥𝑎
†
𝑡1 …𝑎

†
𝑡𝓁 |vac⟩ (100b)

=
1√
𝓁𝑁 𝓁

𝓁
∑
𝑖=1

∑
𝑡1,…,𝑡𝓁

(−1)𝑡1 ⋅𝑠1+…+𝑡𝓁 ⋅𝑠𝓁𝑎†𝑡𝑖⊕𝑦(
∏
𝑘∶𝑘≠𝑖

𝑎†𝑡𝑘)
|vac⟩ (100c)

=
1√
𝓁𝑁 𝓁

𝓁
∑
𝑖=1

∑
𝑡1,…,𝑡𝓁

(−1)𝑦⋅𝑠𝑖(−1)𝑡1 ⋅𝑠1+…+𝑡𝓁 ⋅𝑠𝓁𝑎†𝑡1 …𝑎
†
𝑡𝓁 |vac⟩ (100d)

=
(

1√
𝓁

𝓁
∑
𝑖=1

(−1)𝑦⋅𝑠𝑖
)
𝑎†𝑠1 …𝑎

†
𝑠𝓁 |vac⟩ . (100e)

Here, in the second line we applied the definition of the Fourier basis creation operators, 𝑎†𝑠 = 1√
𝑁 ∑𝑡(−1)𝑠⋅𝑡𝑎

†
𝑡 ,

and in the third line we applied the commutation relations between the creation and annihiliation oper-
ators. Since we have shown that 𝐆̃𝑦 is diagonal in the position basis, acting by 𝐆̃2

𝑦 simply squares the
coefficient, so recalling the definition of 𝛾 (𝑆)𝑦 (defined in eq. (28)) completes the proof.

53

As an immediate corollary, we have that within the subspace of 𝓁 bosons, both 𝐆̃𝑦 and 𝐇̃𝑦 are diagonal in
the position Fock basis, and that the operator that maps |tt𝑆⟩ to 𝛾 (𝑆)𝑦 |tt𝑆⟩ is in fact equal to 𝐆̃2

𝑦 = 𝐇̃𝑦 + id.
The formulation of this map in terms of both the single- and double-momentum hopping operators will be
convenient. In some cases, one formulation will be more useful than the other.

The double-momentum hopping operator is particularly nice to analyze. Recall our definition of Con𝑟
as the projector onto states that are 𝑟-condensates. Con𝑟 is a projector diagonal in the momentum Fock
basis and with the projector capturing all momentum Fock basis states that have a total of 𝓁 bosons and at
least 𝓁 − 𝑟 bosons in the 0-momentum mode. Then, it is easy to observe that

Fact 11.4 (Hopping operators preserve condensates). For any 𝑟 ≥ 0 and 𝑘 ≥ 0,

(id − Con𝑟+2𝑘) ⋅ 𝐇̃𝑦𝑘 … 𝐇̃𝑦1 ⋅ Con𝑟 = 0. (101)

Second, for any polynomial 𝑝 ∶ ℝ2𝑛 → ℝ, let 𝑀𝑝 be the operator 𝑝(𝛾 (𝑆)0 , … , 𝛾 (𝑆)2𝑛−1) |tt𝑆⟩⟨tt𝑆 |. Then,

(id − Con𝑟+2 deg 𝑝) ⋅ 𝑀𝑝 ⋅ Con𝑟 = 0. (102)

Proof. The first equation follows as each term of 𝐇̃𝑦 can at most move 2 bosons from the 0-momentum
mode. For the second equation, observe that the action 𝑀𝑝 can be expressed as

𝑝(𝐆̃2
0, … , 𝐆̃

2
2𝑛−1) = 𝑝(𝐇̃0 + id, … , 𝐇̃2𝑛−1 + id) (103)

due to eq. (100) which can then be expressed as a linear combination of terms of the form 𝐇̃𝑦≤deg 𝑝 … 𝐇̃𝑦1 .
Combining with the first equation completes the proof.

Next, we prove norm bounds on the Hamiltonians 𝐆̃𝑦 and 𝐇̃𝑦 on the subspaces of 𝓁 bosons as well as the
subspace Con𝑟 . By the action of creation and annihilation operators on Fock states calculated in eq. (45a),
on the subspace of 𝓁 bosons, ‖𝐆̃𝑦‖ ≤

√
𝓁 and, therefore, ‖𝐇̃𝑦‖ ≤ 𝓁 − 1. Unfortunately, these norms are too

large for our polynomial approximations to handle. Luckily, both norms are significantly smaller within
the space of condensates.

Fact 11.5 (Norm of hopping operators for condensates). For 𝑦 ≠ 0 and all 𝑟 ≥ 0, the action of the single-
and double-momentum hopping operator has small norm on the space of 𝑟-condensates. More specifically,

‖‖‖𝐆̃𝑦 ⋅ Con𝑟
‖‖‖op ≤

√
𝑟 +

√
2 + 4𝑟 , and (104a)

‖‖‖𝐇̃𝑦 ⋅ Con𝑟
‖‖‖op ≤ 9𝑟 + 9 . (104b)

Proof. Let us define

𝑀𝑦
def=

1√
𝓁(
𝑎†𝑦𝑎0 + 𝑎

†
0𝑎𝑦), and 𝑀 ′

𝑦
def=

1√
𝓁

∑
𝑥∉{0,𝑦}

𝑎†𝑥⊕𝑦𝑎𝑥 , (105)

and therefore bounding the norm of 𝐆̃𝑦 ⋅ Con𝑟 can be achieved by bounding the norms of both 𝑀𝑦 ⋅ Con𝑟
and 𝑀 ′

𝑦 ⋅ Con𝑟 . By construction, 𝑀𝑦 only depends on the bosons in the 0- and 𝑦-momentum modes and
𝑀 ′
𝑦 only depends on the other momentum modes. Observe that 𝐆̃𝑦 and 𝑀𝑦 both commute with 𝑛0 + 𝑛𝑦 .

54

This can be verified by direct calculation using the commutation relations given in eq. (49). Therefore, 𝑀𝑦

preserves the sum of the number of bosons in the 0- and 𝑦-momentum modes. Equivalently, if we divide
the bosonic subspace of 𝓁 bosons into orthogonal subspaces based on the value of 𝑛0 +𝑛𝑦 , we find that𝑀𝑦

is block-diagonal with respect to this direct sum. Therefore, we can restrict our analysis to states where
there are a total of 𝐿 bosons combined in the 0- and 𝑦-momentum modes for 𝓁 − 𝐿 ≤ 𝑟 . Furthermore, since
𝑀𝑦 only depends on the bosons in the 0- and 𝑦-momentum modes, for computing the spectral norm of
𝑀𝑦 ⋅ Con𝑟 we can restrict our analysis to states of a total of 𝐿 bosons entirely contained in the 0- and 𝑦-
momentum modes12. Every such state can be expressed as a superposition of states |𝐿 − 𝑗, 𝑗⟩ representing
the number of bosons in the 0- and 𝑦-momentum modes. Then, we can then calculate the effect of 𝑀𝑦 :

√
𝓁 ⋅ 𝑀𝑦 |𝜙⟩ =

𝐿
∑
𝑗=0

(𝑎
†
𝑦𝑎0 + 𝑎

†
0𝑎𝑦)𝛼𝑗 |𝐿 − 𝑗, 𝑗⟩ (108a)

=
𝐿
∑
𝑗=0
𝛼𝑗 (

√
(𝐿 − 𝑗)(𝑗 + 1)|𝐿 − 𝑗 − 1, 𝑗 + 1⟩ +

√
(𝐿 − 𝑗 + 1)𝑗|𝐿 − 𝑗 + 1, 𝑗 − 1⟩) (108b)

=
(

𝐿
∑
𝑗 ′=1

𝛼𝑗 ′−1
√
(𝐿 − 𝑗 ′ + 1)𝑗 ′|𝐿 − 𝑗 ′, 𝑗 ′⟩

)

+
(

𝐿−1
∑
𝑗 ′′=0

𝛼𝑗 ′′+1
√
(𝐿 − 𝑗 ′′)(𝑗 ′′ + 1)|𝐿 − 𝑗 ′′, 𝑗 ′′⟩

)

(108c)

=
𝐿
∑
𝑗=0

(𝛼𝑗−1
√
(𝐿 − 𝑗 + 1)𝑗 + 𝛼𝑗+1

√
(𝐿 − 𝑗)(𝑗 + 1)) |𝐿 − 𝑗, 𝑗⟩ (108d)

Above, in the first line, we are applying the annihilation and creation operators using eq. (45a). Then
we broke the expression into two terms, and did a change of variable 𝑗 ′ = 𝑗 + 1 and 𝑗 ′′ = 𝑗 − 1, with
𝛼−1 = 𝛼𝐿+1 = 0. Then we relabeled 𝑗 ′′ → 𝑗 and 𝑗 ′ → 𝑗 . Now we can bound the norm of 𝑀𝑦 |𝜙⟩, which is:

‖‖‖𝑀𝑦 |𝜙⟩
‖‖‖
2
=

1
𝓁

𝐿
∑
𝑗=0

|||𝛼𝑗−1
√
(𝐿 − 𝑗 + 1)𝑗 + 𝛼𝑗+1

√
(𝐿 − 𝑗)(𝑗 + 1)|||

2
(109a)

≤
2
𝓁

𝐿
∑
𝑗=0

|||𝛼𝑗−1
√
(𝐿 − 𝑗 + 1)𝑗|||

2
+ |||𝛼𝑗+1

√
(𝐿 − 𝑗)(𝑗 + 1)|||

2
(109b)

12To formalize this, observe that the Hilbert space corresponding to Con𝑟 can be factorized as

Con𝑟 =
𝓁

⨁
𝐿=𝓁−𝑟

((𝐿)
{0,𝑦} ⊗(𝓁−𝐿)

rest) (106)

where (𝐿)
{0,𝑦} is the Fock space of the 0- and 𝑦-momentum modes restricted to containing exactly 𝐿 bosons and (𝓁−𝐿)

rest is the Fock
space for the remainder of the modes restricted to 𝓁 − 𝐿 bosons. Since 𝑀𝑦 commutes with 𝑛0 + 𝑛𝑦 and does not depend on the
state of the other modes, we can also factorize 𝑀𝑦 as

𝑀𝑦 =
𝓁

⨁
𝐿=𝓁−𝑟

(𝑀 (𝐿)
𝑦 ⊗ idrest). (107)

Therefore, we can restrict to analyzing only 𝑀 (𝐿)
𝑦 for every 𝐿.

55

=
2
𝓁

𝐿
∑
𝑗=0

|𝛼𝑗−1|2(𝐿 − 𝑗 + 1)𝑗 + |𝛼𝑗+1|2(𝐿 − 𝑗)(𝑗 + 1) (109c)

=
2
𝓁 (

𝐿
∑
𝑗 ′=0

|𝛼𝑗 ′ |2(𝐿 − 𝑗 ′)(𝑗 ′ + 1)
)

+
2
𝓁 (

𝐿
∑
𝑗 ′′=0

|𝛼𝑗 ′′ |2(𝐿 − 𝑗 ′′ + 1)𝑗 ′′
)

(109d)

=
2
𝓁

𝐿
∑
𝑗=0

|𝛼𝑗 |2(𝐿 + 2𝑗𝐿 − 2𝑗2) (109e)

≤
2
𝓁

𝐿
∑
𝑗=0

|𝛼𝑗 |2(𝐿 + 2𝑟𝐿) (109f)

= 2𝐿(1 + 2𝑟)/𝓁 (109g)
≤ 2 + 4𝑟 . (109h)

Here, we first used that |𝑎 + 𝑏|2 ≤ 2|𝑎|2 + 2|𝑏|2, then broke up the sum and performed a change of variable
𝑗 ′ = 𝑗 − 1 and 𝑗 ′′ = 𝑗 + 1. Then we relabeled 𝑗 ′′ → 𝑗 and 𝑗 ′ → 𝑗 , and used the bound 𝑗 ≤ 𝑟 , −𝑗2 ≤ 0, 𝐿 ≤ 𝓁,
and finally that ∑𝑗 |𝛼𝑗 |2 = 1. We also use the fact that (𝐿 − 𝑗)(𝑗 + 1) + (𝐿 − 𝑗 + 1)𝑗 = 𝐿 − 2𝐿𝑗 − 2𝑗2. This
gives the bound on ‖𝑀𝑦 ⋅ Con𝑟 ‖ op.

Similarly, to bound ‖𝑀 ′
𝑦 ⋅ Con𝑟 ‖ op observe that since𝑀 ′

𝑦 only depends on the modes outside of 0 and 𝑦
and there are at most 𝑟 bosons in said modes, then by concavity of the square root function and eq. (45a),
the total norm is at most 𝑟/

√
𝓁 ≤ 𝑟/

√
𝑟 ≤

√
𝑟 for 𝑟 ≤ 𝓁. This proves the bound for ‖𝑀 ′

𝑦 ⋅ Con𝑟 ‖ op for 𝑟 ≤ 𝓁.

When 𝑟 ≥ 𝓁 we can use the fact that ‖‖‖𝐆̃𝑦
‖‖‖ ≤

√
𝓁 ≤

√
𝑟 .

To get the bound on ‖𝐇̃𝑦 ⋅ Con𝑟 ‖ op, we note that 𝐆̃𝑦 |𝜙⟩ is an (𝑟 + 1)-condensate, so we can apply the
bound on ‖𝐆̃𝑦 ⋅ Con𝑟 ‖ op twice:

‖‖‖𝐇̃𝑦 |𝜙⟩
‖‖‖ ≤ 1 + ‖‖‖𝐆̃

2
𝑦 |𝜙⟩

‖‖‖ (110a)

≤ 1 + (
√
𝑟 +

√
2 + 4𝑟) (

√
𝑟 + 1 +

√
2 + 4(𝑟 + 1)) (110b)

≤ 9𝑟 + 9 . (110c)

Here in the first line we use the fact that 𝐇̃𝑦 = 𝐆̃2
𝑦 − id and the triangle inequality, and then take the crude

upper bound of 9𝑟 + 9.

12 Polynomial-query algorithms generate quasi-even condensates

12.1 Proving the condensate property

In this section, we use the prior characterization to prove that the state of any algorithm making 𝑇 -queries
to the 𝑈 oracle is very close to a condensate, meaning that the state is almost entirely supported on mo-
mentum Fock states with almost all of the bosons in the 0-momentum mode. We will later prove the
quasi-even property. We do so by showing that for the post-query state |𝜓PQ⟩ (expressed in eq. (95)), and

56

every 𝜄 > 0, we prove the existence of a state |𝜓′⟩ such that (a) ‖‖ |𝜓PQ⟩ − |𝜓′⟩‖‖ ≤ 𝜄, and (b) that |𝜓′⟩ is a
poly(ln(1/𝜄), 𝑛, 𝑇)-condensate, meaning that 𝓁 − poly(ln(1/𝜄), 𝑛, 𝑇) of the bosons are in the 0-momentum
mode.

We generate the state |𝜓′⟩ by replacing the exponential functions in the 𝛾 (𝑆)𝑦 terms with low-degree
polynomials in the 𝛾 (𝑆)𝑦 terms and proving that the approximation state is very close to the true state.
This will allow us to derive that any algorithm state |𝜓′⟩ is always close to a condensate |𝜓′⟩, as we have
strong mathematical techniques for analyzing the behavior of low-degree polynomials. Furthermore, it is
important to note that we do not identify a particular condensate state |𝜓′⟩ but rather a family of such
states parametrized by the error parameter 𝜄. Therefore, we have a smooth transition between accuracy
and how much of a condensate the original state is. The main theorem of this section is the following,
which we prove after establishing some necessary mathematical machinery.

First, we define functions

𝑒0(𝛾)
def= 1 − e−𝜅𝛾 , (111a)

𝑒1(𝛾)
def=
√
e−𝜅𝛾 (2 − e−𝜅𝛾) =

√
2e−𝜅𝛾/2

√
1 − e−𝜅𝛾/2 (111b)

so that we can express the Kraus operators 𝐸(𝑦)𝑥 as ∑𝑆 𝑒𝑥(𝑦) |tt𝑆⟩⟨tt𝑆 | to simplify the expressions in eq. (87).
We note that evaluating the functions 𝑒𝑏(𝑋) for a diagonalizable matrix 𝑋 happens by applying diago-
nalizing 𝑋 and applying 𝑒𝑏 to the diagonal entries. For all 𝐵 ∈ ℤ≥0 and 𝐱 = (𝑥1, … , 𝑥𝐵), we also use the
notational shorthand 𝑒𝐱(𝛾1, … , 𝛾𝐵)

def= ∏𝐵
𝑖=1 𝑒𝑥𝑖(𝛾𝑖). Using our prior observations about the action of 𝐆̃𝑦 ,

then we can express

|𝜓PQ⟩ = ∑
𝐲,𝐛 [

(𝐴𝐲,𝐛)A ⊗(
∑
𝐱
(𝐾𝐱)𝐲,𝐛 ⊗ 𝑒𝐱(𝐆̃2

𝑦𝐛1
, … , 𝐆̃2

𝑦𝐛|𝐛|))]
𝐴 |0⟩A |init⟩US , (112)

Similarly, for any other family of functions 𝑓𝐱 = 𝑓(𝑥1,…,𝑥𝐵), we can define:

|𝜓𝑓 ⟩
def= ∑

𝐲,𝐛 [
(𝐴𝐲,𝐛)A ⊗(

∑
𝐱
(𝐾𝐱)𝐲,𝐛 ⊗ 𝑓𝐱(𝐆̃2

𝑦𝐛1
, … , 𝐆̃2

𝑦𝐛|𝐛|))]
𝐴 |0⟩A |init⟩US . (113)

The main result of this section is to show that there is a family of polynomials whose state ||𝜓𝑓⟩ well-
approximates ||𝜓PQ⟩.

Theorem 12.1 (Polynomial approximation of post-query state). For every 𝜄 > 0, there exists a family of
polynomials AKraus𝐱 (that implicitly depends on 𝜄) in the operators 𝐆̃2

𝑦𝑖 with

deg (AKraus𝐱) = 𝑂(𝑛2𝑇 5 ln(𝑇) ln2(1/𝜄)) , (114)

such that we can bound the distance between the states expressed in eq. (112) and eq. (113) by

‖‖ |𝜓PQ⟩ − |𝜓AKraus⟩‖‖ ≤ 𝜄 . (115)

As a consequence of this polynomial approximation of the post-query state, we will show a stronger
statement that we can replace the operators derived from exponential functions, 𝑒𝑥𝑖 , with the same expo-
nential functions sandwiched between projectors on the condensate subspace. This technical machinery

57

will be used in proving the quasi-even property in the following subsection. More precisely, for integers
𝑟, 𝑅 > 0, define

|𝜓𝑅,𝑟⟩
def= ∑

𝐲,𝐛 [
(𝐴𝐲,𝐛)A ⊗(

∑
𝐱
(𝐾𝐱)𝐲,𝐛 ⊗

|𝐛|

∏
𝑖=1

Con𝑟 ⋅ 𝑒𝑥𝑖(Con𝑅 ⋅ 𝐆̃
2
𝑦𝐛𝑖

⋅ Con𝑅) ⋅ Con𝑟)]
𝐴 |0⟩A |init⟩US . (116)

The reason two integers 𝑟, 𝑅 appear is an artifact of the proof and not a technical necessity.

Corollary 12.2 (Sandwiching property). For every 𝜄 > 0, there exist integers 𝑟 = 𝑂(𝑛2𝑇 5 ln3(𝑇) ln2(1/𝜄))
and 𝑅 = 𝑂(𝑛3𝑇 6 ln4(𝑇) ln3(1/𝜄)), such that

‖‖‖ |𝜓PQ⟩ − |𝜓𝑅,𝑟⟩
‖‖‖ ≤ 𝜄. (117)

Here, we provide a proof sketch for Theorem 12.1 and Corollary 12.2. A formal proof will appear in
the next subsection.

Proof sketch of Theorem 12.1 Ideally, we would like to approximate the exponential functions in
the functions 𝑒𝐱 by their truncated Taylor series. But ‖𝐆̃𝑦‖ ≤

√
𝓁 on the space of 𝓁 boson states and,

therefore, such a truncation would require a degree of ≈ 𝓁, rendering the approximation useless for our
purposes. A proof of Theorem 12.1 will have to exploit that we start in the condensate subspace Con0

before any queries are made. More precisely, we will use the fact that the double-hopping operator 𝐆̃2
𝑦 has

a bounded operator norm when restricted to the condensate subspace Con𝑚. Indeed, the restricted norm
scales linearly in the parameter 𝑚 by Fact 11.5. As each double-hopping operator can only increase the
parameter 𝑚 by at most 2 we find that ‖𝐆̃2𝑚

𝑦 Con0‖ is at most exponentially larger than the factor 1/𝑚! in
the expansion e−𝑧 = ∑∞

𝑚=0
(−𝑧)𝑚
𝑚! . In particular, for a sufficiently large parameter 1/𝑠 in the exponent, the

Taylor approximation of e−𝑧/𝑠 converges exponentially. The key observation is that e−𝑧 = (e−𝑧/𝑠)𝑠 and
that the function 𝑧 ↦ 𝑧𝑠 can be approximated by Chebyshev polynomials of degree roughly √

𝑠. Then,
every monomial in the Chebyshev approximation is a factor of the form e−𝑧/𝑠′ with 𝑠′ ≥ √

𝑠 and is thus
amenable to the Taylor approximation for sufficiently large 𝑠.

Remark 12.3. Using e𝑧 = (e−𝑧/𝑠)𝑠 , approximating e−𝑧/𝑠 via a truncated Taylor series and 𝑧𝑠 by a truncated
Chebyshev series is identical to a construction of a flat approximation due to Narayanan [Nar24]. Using this
idea, Narayanan achieves an exponential improvement over the original flat approximation of the exponential
function in Ref. [BLMT24]. An earlier version of our manuscript used Narayanan’s result as a black box and
combined the flat approximation with tail bounds on 𝛾 (𝑆)𝑦 in the position basis.

The proof of Corollary 12.2 works by going back and forth between the polynomial approximation and
the original Kraus operators. As the action of the 𝐆̃2

𝑦 Hamiltonians cannot move more than 2 bosons from
the 0-momentum mode, we can move/insert the projectors Con𝑟 virtually anywhere in the polynomial
approximation for sufficiently large 𝑟 . We first use this to move the projectors Con𝑟 between the Kraus
operators and then exploit that the strategy to prove Theorem 12.1 also works if we start in Con𝑟 instead
of Con0 by choosing a degree that depends on 𝑟 polynomially. Moreover, we find that the polynomial
approximation remains valid after replacing 𝐆̃2

𝑦 by the sandwiched Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅 in a single Kraus

operator. This observation roughly allows us to approximate Con𝑟 ⋅𝑒𝑥(𝐆̃2
𝑦)⋅Con𝑟 by a polynomial depending

on 𝑟 and 𝜄, moveCon𝑅 into the argument for large enough𝑅, and finally reinsert the original Kraus operator.

58

12.1.1 Approximate algorithm states defined by polynomials

We will introduce two polynomial approximations in this section, the first of which is the truncated Taylor
expansion of the exponential, given below.

Taylor𝑑(𝑧)
def=

𝑑
∑
𝑗=0

𝑧𝑗

𝑗!
. (118)

Then, we have the following lemma.

Lemma 12.4 (Truncated Taylor condensate approximation). Let𝑊 be an operator such that there exists a
constant𝑀 > 0 such that for all integers𝑚 > 0, the action of𝑊 on the subspace of𝑚-condensates is bounded
in norm by 𝑀𝑚. Additionally, assume that 𝑊 maps the subspace of 𝑚-condensates into the subspace of
𝑚 + 2-condensates for all 𝑚. I.e., ∀𝑚 > 0,𝑊 satisfies both of the following:

‖Con𝑚 ⋅ 𝑊 ⋅ Con𝑚‖op ≤ 𝑀𝑚 and, (119a)

𝑊 ⋅ Con𝑚 = Con𝑚+2 ⋅ 𝑊 ⋅ Con𝑚 = Con𝑚+2 ⋅ 𝑊 ⋅ Con𝑚+2 ⋅ Con𝑚 . (119b)

Then, for all 𝑟 ≥ 0, 𝑠 ≥ 3𝑀 , 1/e ≥ 𝜀 > 0, and 𝑑 ≥ 4 ln(1/𝜀) + 𝑟 , we have

‖‖‖(Taylor𝑑 (−𝑊/𝑠) − exp(−𝑊/𝑠)) ⋅ Con𝑟
‖‖‖op ≤ 𝜀 . (120)

Proof. Expanding out the Taylor series for e−𝑊/𝑠 , we have

‖‖‖(Taylor𝑑 (−𝑊/𝑠) − exp(−𝑊/𝑠))Con𝑟
‖‖‖op =

‖‖‖‖‖

∞

∑
𝑗=𝑑+1

1
𝑗!
𝑠−𝑗 (−𝑊)𝑗 ⋅ Con𝑟

‖‖‖‖‖op
(121a)

≤
∞

∑
𝑗=𝑑+1

1
𝑗!
𝑠−𝑗 ‖‖𝑊

𝑗 ⋅ Con𝑟 ‖‖op (121b)

=
∞

∑
𝑗=𝑑+1

1
𝑗!
𝑠−𝑗

‖‖‖‖‖(

1

∏
𝑘=𝑗

Con2𝑘+𝑟𝑊Con2𝑘+𝑟)
Con𝑟

‖‖‖‖‖op
(121c)

≤
∞

∑
𝑗=𝑑+1

1
𝑗!
𝑠−𝑗

1

∏
𝑘=𝑗

‖Con2𝑘+𝑟𝑊Con2𝑘+𝑟 ‖op (121d)

≤
∞

∑
𝑗=𝑑+1

1
𝑗!(

1

∏
𝑘=𝑗

(𝑘 + 𝑟/2)
)(

𝑀
𝑠)

𝑗

(121e)

=
∞

∑
𝑗=𝑑+1

(
𝑟/2 + 𝑗
𝑗)(

𝑀
𝑠)

𝑗

, (121f)

where we first used the triangle inequality, then used eq. (119b) to resolve eq. (121c), sub-multiplicativity of
the operator norm in eq. (121d), and eq. (119a) for proving eq. (121e). Now, we bound eq. (121f). Consider

59

the following

𝑆(𝑑) def=
∞

∑
𝑗=𝑑+1

(
𝑟/2 + 𝑗
𝑗)(

𝑀
𝑠)

𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
def=𝑤𝑗

. (122)

We will bound this from above by a geometric series, which requires bounding the ratio of successive
terms. We find

𝑤𝑗+1
𝑤𝑗

= (
𝑀
𝑠)

(𝑟/2+𝑗+1𝑗+1)

(𝑟/2+𝑗𝑗)
= (

𝑀
𝑠)

𝑟/2 + 𝑗 + 1
𝑗 + 1

= (
𝑀
𝑠)(1 +

𝑟
2(𝑗 + 1))

. (123)

For 𝑗 ≥ 𝑑, this is at most

𝑄 def= (
𝑀
𝑠)(1 +

𝑟
2(𝑑 + 1))

. (124)

Since 𝑀/𝑠 ≤ 1/3 and 𝑟/2(𝑑 + 1) ≤ 1/2, 𝑄 ≤ 1/2. Therefore, the series 𝑆(𝑑) is bounded by

𝑆(𝑑) =
∞

∑
𝑗=𝑑+1

𝑎𝑗 ≤ 𝑤𝑑+1
∞

∑
𝑘=0
𝑄𝑘 = 2𝑤𝑑+1 = 2 ⋅ (

𝑟/2 + 𝑑 + 1
𝑑 + 1)(

𝑀
𝑠)

𝑑+1

≤ 2𝑟/2+𝑑+2 ⋅ 3−(𝑑+1) . (125)

For 𝑑 ≥ 4 ln(1/𝜀) + 𝑟 , this can be upper bounded by 𝜀. Since 𝑆(𝑑) equals the error in eq. (121), this
completes the proof.

The second family of polynomials we consider is the family of Chebyshev polynomials of the first kind.
These are typically denoted using the symbol 𝑇𝑘 , but since this choice would overload the character 𝑇 , we
use the following notation,

Cheby𝑘(𝑧) = cos(𝑘 arccos(𝑧)), 𝑧 ∈ [−1, 1] . (126)

The Chebyshev polynomials form a basis for the space of polynomials, and, therefore, there exist coeffi-
cients 𝑎(𝑠)𝑘 such that the function 𝑧 ↦ 𝑧𝑠 in the basis of Chebyshev polynomials is given by

𝑧𝑠 =
∞
∑
𝑘=0

𝑎(𝑠)𝑘 Cheby𝑘(𝑧) . (127)

Denote the truncated Chebyshev expansion of 𝑥𝑠 by

TCheby𝑠,𝑑(𝑧)
def=

𝑑
∑
𝑘=0

𝑎(𝑠)𝑘 Cheby𝑘(𝑧) . (128)

We will make use of the following facts about Chebyshev polynomials.

Fact 12.5 (Theorem 3.3 in [SV+14]). Then, |𝑎(𝑠)𝑘 | ≤ 1 for all 𝑘 ≥ 0 and

||𝑧
𝑠 − TCheby𝑠,𝑑(𝑧)|| ≤ 2 ⋅ exp(−

𝑑2

2𝑠)
for all 𝑥 ∈ [−1, 1] . (129)

60

Fact 12.6 (Bounds on the coefficients of the Chebyshev polynomials [Nar24])). For all 𝑘 ≥ 0, the coefficients
of Cheby𝑘 in the monomial basis are bounded by (1 +

√
2)𝑘 .

Then, we have the following polynomial approximation:

Lemma 12.7 (Flat approximations of exponential functions). Let𝑊 be a PSD operator𝑊 ⪰ 0, satisfying
the predicates of Lemma 12.4. Then, for any 𝜀 > 0, 𝑟 ≥ 0, there is a polynomial, which we call Flat𝜀 = Flat𝜀,𝑀,𝑟
(but we drop the subscripts 𝑀, 𝑟), of degree at most 100𝑀 ln(1/𝜀)(𝑟 + 1) such that

‖(exp(−𝑊) − Flat𝜀(𝑊)) ⋅ Con𝑟 ‖op ≤ 𝜀 . (130)

Proof. We employ the fact that 𝑊 ⪰ 0 to ensure that the spectrum of exp(−𝑊/𝑤) is contained in [0, 1].
To apply Lemma 12.4, fix 𝑤 def= 36𝑀2 ln(2/𝜀), and 𝑑′ def= ⌈

√
72𝑀2 ln2(2/𝜀)⌉. Then,

exp(−𝑊) ⋅ Con𝑟 = (exp(−𝑊/𝑤))𝑤 ⋅ Con𝑟 ≈𝜀/2 TCheby𝑤,𝑑′ (exp(−𝑊/𝑤)) ⋅ Con𝑟 (131)

in operator norm for all 𝑑′ ≥
√
2𝑤 ln(2/𝜀) by Fact 12.5. Here, we use the following notation: 𝑋 ≈𝜀 𝑋 ′ is

used to denote that ‖𝑋 − 𝑋 ′‖op ≤ 𝜀. Now let 𝑏𝑘 be the coefficient of the monomial 𝑧𝑘 in the decomposition
of the polynomial TCheby𝑤,𝑑′(𝑧)—i.e.,

TCheby𝑤,𝑑′(𝑧) = ∑
𝑘
𝑏𝑘𝑧𝑘 . (132)

For our choice of 𝑤 and 𝑑′, we have

𝑑′ = ⌈
√
2𝑤 ln(2/𝜀)⌉ , (133)

and thus we can bound for all 𝑘 ≤ 𝑑′,

𝑘
𝑤

≤
𝑑′

𝑤
≤

√
4𝑤 ln(2/𝜀)

𝑤
. (134)

Now we fix 𝑑 def= (4 ((9𝑀 + 1) ln (1/𝜀) + ln(2)) + 𝑟). By Lemma 12.4 that whenever

𝑑 ≥ 4 ln(2 ⋅ (max
𝑘

|𝑏𝑘 |) ⋅ 𝑑′/𝜀) + 𝑟 and 𝑠 def=
√

𝑤
4 ln(2/𝜀)

≥ 3𝑀 , (135)

we have that

TCheby𝑤,𝑑′ (exp(−𝑊/𝑤)) ⋅ Con𝑟 =
𝑑′

∑
𝑘=1

𝑏𝑘 ⋅ exp(−𝑊/𝑤)𝑘 ⋅ Con𝑟 (136a)

=
𝑑′

∑
𝑘=1

𝑏𝑘 ⋅ exp(−
𝑘
𝑤
𝑊) ⋅ Con𝑟 (136b)

≈𝜀/2
𝑑′

∑
𝑘=1

𝑏𝑘 ⋅ Taylor𝑑 (−
𝑘
𝑤
𝑊) ⋅ Con𝑟 , (136c)

61

Here, we recall that Taylor𝑑 is the truncated Taylor series for the exponential. In the final step, we use
the fact that𝑊 satisfies the conditions required of the operator, and recall that we chose𝑤 = 36𝑀2 ln(2/𝜀),
combined with eq. (134), to satisfy the constraint on 𝑠 required for Lemma 12.4. The next part of the proof
is to show that 𝑑 satisfies the required bound. We will take the following upper bound on 𝑑′ for sufficiently
small 𝜀,

𝑑′ = ⌈
√
72𝑀2 ln2(2/𝜀)⌉ ≤ 9𝑀 ln(1/𝜀) . (137)

Observe that, by definition,

𝑏𝑘 =
𝑑′

∑
𝑘′=𝑘

𝑎(𝑠)𝑘′ ⋅ [Coefficient of 𝑧𝑘′ in Cheby𝑘′(𝑧)] , (138)

and by Fact 12.6, for all 𝑘, the coefficients 𝑏𝑘 can be bounded by

|𝑏𝑘 | ≤ (|𝑎
(𝑠)
1 | + ⋯ + |𝑎(𝑠)𝑑′ |)(1 +

√
2)
𝑑′ ≤ 𝑑′(2.5)𝑑

′
. (139)

Taking the logarithm and applying the choice from eq. (137) for any 𝑑′ ≥ 10, we have that ln(|𝑏𝑘 |) ≤
ln(𝑑′) + 𝑑′ ln(2.5), this is equivalent to

ln(|𝑏𝑘 |) + ln(𝑑′) ≤ 2 ln(𝑑′) + 𝑑′ ln(2.5) . (140a)
≤ 2 ln(𝑑′) + 9𝑀 ln(1/𝜀) ⋅ 0.89 (140b)
≤ 9𝑀 ln(1/𝜀) . (140c)

Plugging into eq. (135), we find that 𝑑 satisfies the necessary lower bound. Now, take Flat𝜀(𝑧) to be the
polynomial defined to be

Flat𝜀(𝑧)
def=

𝑑′

∑
𝑘=1

𝑏𝑘 ⋅ Taylor𝑑 (−
𝑘
𝑤

⋅ 𝑧) . (141)

So Flat𝜀 is a degree ≤ 𝑑 polynomial. Where again, 𝑑 = (4 ((9𝑀 + 1) ln (1/𝜀) + ln(2)) + 𝑟), and the coeffi-
cients 𝑏𝑘 come from TCheby𝑤,𝑑′ for our choice of 𝑤 and 𝑑′ from the beginning of the proof. It has degree
at most

deg(Flat𝜀) ≤ 𝑑 ≤ (4 ((9𝑀 + 1) ln (1/𝜀) + ln(2)) + 𝑟) ≤ 100𝑀 ln(1/𝜀)(𝑟 + 1) . (142)

Here, we use loose upper bounds. This polynomial appears on the right-hand side of eq. (136c), then

TCheby𝑤,𝑑′(exp(−𝑊/𝑤)) ⋅ Con𝑟 ≈𝜀/2 Flat(𝑊) ⋅ Con𝑟 . (143)

The previous equation and eq. (131) combine via triangle inequality for the lemma statement.

We can now finally consider the operators
𝑇
∏
𝑖=1
𝑒𝑥𝑖(𝐆̃

2
𝑦𝑖), where, recall, 𝑒𝑥𝑖(𝑧) are terms

𝑒0(𝑧)
def= 1 − e−𝜅𝑧 , and (144a)

𝑒1(𝑧)
def=
√
e−𝜅𝑧(2 − e−𝜅𝑧) =

√
2e−𝜅𝑧/2

√
1 − e−𝜅𝑧/2 , (144b)

to match the definitions of the Kraus operators 𝐸(𝑦𝑖)0 and 𝐸(𝑦𝑖)1 (Corollary 11.2). Towards the proof of Corol-
lary 12.2, we prove the following more general lemma:

62

Lemma 12.8. Let 𝑊1, … ,𝑊𝑇 ⪰ 0 be PSD operators that each satisfy the predicates of Lemma 12.4 and
pairwise commute. For any 𝑟 ≥ 0 and every 𝐱 ∈ {0, 1}𝑇 , there exists a multivariate polynomial AKraus𝜀,𝐱 such
that

‖‖‖‖‖(

𝑇
∏
𝑖=0
𝑒𝑥𝑖(𝑊𝑖) − AKraus𝜀,𝐱(𝑊1, … ,𝑊𝑇))

⋅ Con𝑟
‖‖‖‖‖op

≤ 𝜀 . (145)

Moreover, AKraus𝜀,𝐱 is of degree 𝑂(𝑀𝑇 3 ln(𝑇) ln2(1/𝜀)(𝑟 + 1)).

Proof. We begin with a single PSD operator𝑊 that satisfies the predicates of Lemma 12.4. We replace the
function 𝑧 ↦

√
1 − 𝑧/2 in the definition of 𝑒1 with the truncated binomial expansion13:

TSqrt (𝑧) def=
𝑑′′

∑
𝑘=0

(
1/2
𝑘)(

−1
2)

𝑘

𝑧𝑘 , (146)

with the choice of 𝑑′′ = 4+ 3
2 (ln(𝑇)+ ln(1/𝜀)). The nomenclature TSqrt(⋅) comes from it being a truncated

Taylor expansion. Recall that the square-root function does not have a good Taylor series expansion about
0, which is why we build it from 𝑧 ↦

√
1 − 𝑧/2. We define the following polynomial approximations to

make progress towards approximation 𝑒0(𝑧) and 𝑒1(𝑧).

𝑝0(𝑧)
def= 1 − 𝑧2 , (147a)

𝑝1(𝑧)
def=
√
2𝑧 ⋅ TSqrt(𝑧2) . (147b)

Then 𝑒𝑥(𝑧) should be approximated by 𝑝𝑥(𝑒−𝜅𝑧/2) whenever TSqrt is a good approximation of
√
1 − 𝑧/2.

Claim 12.9. It follows that

‖‖‖‖‖

𝑇

∏
𝑖=1
𝑒𝑥𝑖(𝑊𝑖) −

𝑇

∏
𝑖=1
𝑝𝑥𝑖 (exp(−𝜅𝑊𝑖/2))

‖‖‖‖‖op
≤ 𝜀/2 . (148)

Proof. Next, observe that by construction for PSD 𝑊 ,

𝑝0(exp(−𝜅𝑊/2)) = 𝑒0(𝑊). (149)

The challenge is to prove a similar statement for 𝑝1 and 𝑒1. Here, we will achieve an approximation.

‖𝑝1(exp(−𝜅𝑊/2)) − 𝑒1(𝑊)‖op = (150a)
‖‖‖‖‖

√
2exp(−𝜅𝑊/2)

(

√
1 −

1
2
exp(−𝜅𝑊) − TSqrt(exp(−𝜅𝑊))

)

‖‖‖‖‖op
(150b)

≤
√
2‖exp(−𝜅𝑊/2)‖op

∞

∑
𝑘=𝑑′′

||||(
1/2
𝑘)

||||
⋅
1
2𝑘

⋅ ‖‖exp(−𝜅𝑊)𝑘‖‖op (150c)

≤
√
2

2𝑑′′
∞

∑
𝑘=0

1
2𝑘

(150d)

13The usual binomial expansion (1 + 𝑎)𝑟 = ∑𝑘 (
𝑟
𝑘)𝑎

𝑘 also extends to real-valued 𝑟 . Here, we are using 𝑟 = 1/2 and 𝑎 = −𝑧/2,
and truncating to 𝑘 ≤ 𝑑′′.

63

≤
𝜀
4𝑇

, (150e)

where we only use the facts that |||(
1/2
𝑘)

||| ≤ 1 and ‖‖‖(e
−𝜅𝑊)

𝑘‖‖‖op ≤ 1 as 𝑊 is PSD. So far we have produced
approximations of single terms. We now lift these approximations to products of terms using a hybrid
argument. We define hybrids 𝐵𝑗 :

𝐵𝑗
def=

𝑇

∏
𝑘=𝑇−𝑗

𝑒𝑥𝑘 (𝑊𝑘)
𝑇−𝑗−1

∏
𝑘=1

𝑝𝑥𝑖(exp(−𝜅𝑊𝑘/2)) . (151)

The hybrids combine to yield a total bound of

‖‖‖‖‖

𝑇

∏
𝑖=1
𝑒𝑥𝑖(𝑊𝑖) −

𝑇

∏
𝑖=1
𝑝𝑥𝑖 (exp(−𝜅𝑊𝑖/2))

‖‖‖‖‖op
(152a)

≤
𝑇

∑
𝑗=1

‖‖𝐵𝑗 − 𝐵𝑗−1‖‖op (152b)

≤
𝑇

∑
𝑗=1

‖‖𝑒𝑥𝑇−𝑗 (𝑊𝑇−𝑗) − 𝑝𝑥𝑇−𝑗 (exp(−𝜅𝑊𝑇−𝑗/2))‖‖op

𝑇−𝑗

∏
𝑘=1

‖‖𝑝𝑥𝑘 (exp(−𝜅𝑊𝑘/2))‖‖op (152c)

≤ 𝑇 ⋅
𝜀
4𝑇

⋅ (1 +
𝜀
4𝑇)

𝑇−𝑗
(152d)

≤
𝜀
2
, (152e)

Here, we use the facts that ‖‖𝑒𝑥𝑘 (𝑊𝑘)‖‖op ≤ 1, and that 𝑒0(𝑊𝑖) = 𝑝0(𝑊𝑖), and from eq. (150) we know that
‖𝑒1(𝑊𝑖) − 𝑝1(𝑊𝑖)‖op ≤ 𝜀/4𝑇 . We also used that via the triangle inequality,

‖‖𝑝𝑥𝑘 (exp(−𝜅𝑊𝑘/2))‖‖op ≤
𝜀
4𝑇

+ ‖‖𝑒𝑥𝑘 (𝑊𝑘)‖‖op ≤ 1 +
𝜀
4𝑇

. (153)

Lastly, we resolved eq. (152e) using

(1 +
𝜀
4𝑇)

𝑇−𝑗
≤ (1 +

𝜀
4𝑇)

𝑇
≤ e

𝜀
4𝑇 𝑇 ≤ e1/4 ≤ 2 . (154)

We then observe that ∏𝑇
𝑖=1 𝑝𝑥𝑖(exp(−𝜅𝑊𝑖/2)) is a polynomial in the variables exp(−𝜅𝑊𝑘/2) of degree

at most 3𝑑′′𝑇 due to 𝑇 terms of the form 𝑧TSqrt(𝑧2) which will yield a degree of (1 + 2𝑑′′) ≤ 3𝑑′′. For any
collection of 𝐽 many operators 𝑊𝑖𝑗 , we can write

𝐽

∏
𝑗=1

exp(−𝜅𝑊𝑖𝑗/2) = exp
(
−𝜅

𝐽

∑
𝑗=1
𝑊𝑖𝑗/2)

(155)

as by assumption, the 𝑊𝑖 pairwise commute. Notice also that ∑𝐽
𝑗=1𝑊𝑖𝑗 satisfies eq. (119b) (because each

term maps the subspace of 𝑚-condensates to the subspace of 𝑚 + 2-condensates) and by the triangle in-
equality, we have that

‖‖‖‖‖
Con𝑚 ⋅

(
𝜅
2

𝐽

∑
𝑗=1
𝑊𝑖𝑗)

⋅ Con𝑚
‖‖‖‖‖op

≤ 𝜅𝐽𝑀𝑚 ≤ 𝐽𝑀𝑚 . (156)

64

In the last line, we dropped the 𝜅 as it is a constant < 1 (think 1/10). Next, we take the univariate polyno-
mials 𝑝𝑥(𝑧) defined in eq. (147) and write them in the monomial basis in terms of families of coefficients
{𝑐(0)𝑘 } and {𝑐(1)𝑘 }:

𝑝𝑥(𝑧) =
3𝑑′′

∑
𝑘=0

𝑐(𝑥)𝑘 𝑧𝑘 . (157)

This lets us construct multivariate polynomials AKraus𝜀,𝐱 in terms of the Flat𝜀 polynomials built in Theo-
rem 12.7. We define AKraus𝜀,𝐱 for 𝐱 = (𝑥1, … , 𝑥𝑇) as

AKraus𝜀,𝐱(𝑧1, … , 𝑧𝑇)
def=

3𝑑′′

∑
𝑘1,…,𝑘𝑇=0(

𝑇
∏
𝑖=1
𝑐(𝑥𝑖)𝑘𝑖 ⋅ Flat 𝜀

2⋅2𝑇 (
−𝜅

𝑇
∑
𝑖=1
𝑘𝑖𝑧𝑖/2))

, (158)

Using the fact that in the sum in the argument of Flat 𝜀
2⋅2𝑇

, we are summing 𝑇 many operators with co-
efficients that are integers and range from 0 to 3𝑑′′, the largest value of 𝐽 which we need to consider in
eq. (156) is upper bounded by 𝐽 ≤ 3𝑑′′𝑇 .

The polynomials AKraus𝜀,𝐱 are designed to approximate the polynomials 𝑝0 and 𝑝1 in the exponential
function when evaluated on operators (𝑊1, … ,𝑊𝑇), which we prove in the following claim.

Claim 12.10. It follows that

‖‖‖‖‖(

𝑇

∏
𝑖=1
𝑝𝑥𝑖(exp(−𝜅𝑊𝑖/2)) − AKraus𝜀,𝐱(𝑊1, … ,𝑊𝑇))

⋅ Con𝑟
‖‖‖‖‖op

≤ 𝜀/2 . (159)

Proof. We use that for any monomial ∏𝐽
𝑗=1 𝑥𝑖𝑗 , we can apply Theorem 12.7 to achieve

𝐽

∏
𝑗=1

exp(−𝜅𝑊𝑖𝑗/2) ⋅ Con𝑟 ≈ 𝜀
2⋅2𝑇

Flat 𝜀
2⋅2𝑇 (

𝐽

∑
𝑗=1
𝜅𝑊𝑖𝑗/2)

⋅ Con𝑟 . (160)

Moreover, we used that the absolute coefficients of ∏𝑇
𝑖=1 𝑝𝑥𝑖 add up to at most 2𝑇 . To see this, observe that

the absolute coefficients of 𝑝0 add up to 2 Moreover, all coefficients in TSqrt(𝑧2) are negative except the
first, which equals 1. Therefore, the absolute coefficients of 𝑝1 add up to

3𝑑′′

∑
𝑘𝑖=0

|||𝑐
(𝑥𝑖)
𝑘𝑖

||| =
√
2(2 − TSqrt(1)) ≤

√
2(2 −

√
1 − 1/2)) ≤ 2. (161)

Finally, we can apply a triangle inequality to find

‖‖‖‖‖(

𝑇

∏
𝑖=1
𝑝𝑥𝑖(exp(−𝜅𝑊𝑖/2)) − AKraus𝜀,𝐱(𝑊1, … ,𝑊𝑇))

⋅ Con𝑟
‖‖‖‖‖op

(162a)

≤
3𝑑′′

∑
𝑘1 ,…,𝑘𝑇=0

|||||

𝑇

∏
𝑖=1
𝑐(𝑥𝑖)𝑘𝑖

|||||
⋅
‖‖‖‖‖(

Flat 𝜀
2⋅2𝑇 (

−𝜅
𝑇

∑
𝑖=1
𝑘𝑖𝑊𝑖/2)

− exp(−𝜅
𝑇

∑
𝑖=1
𝑘𝑖𝑊𝑖/2))

Con𝑟

‖‖‖‖‖
(162b)

≤
3𝑑′′

∑
𝑘1 ,…,𝑘𝑇=0

|||||

𝑇

∏
𝑖=1
𝑐(𝑥𝑖)𝑘𝑖

|||||
⋅
𝜀

2 ⋅ 2𝑇
(162c)

65

≤
3𝑑′′

∑
𝑘1 ,…,𝑘𝑇=1

𝑇

∏
𝑖=1

|||𝑐
(𝑥𝑖)
𝑘𝑖

||| ⋅
𝜀

2 ⋅ 2𝑇
(162d)

=
𝑇

∏
𝑖=1

3𝑑′′

∑
𝑘=0

|||𝑐
(𝑥𝑖)
𝑘𝑖

||| ⋅
𝜀

2 ⋅ 2𝑇
(162e)

≤ 2𝑇
𝜀

2 ⋅ 2𝑇
(162f)

≤
𝜀
2
. (162g)

Now we bound the distance of AKraus𝜀,𝐱 from the product of exponentials via a middleman:
‖‖‖‖‖(

𝑇
∏
𝑖=0
𝑒𝑥𝑖(𝑊𝑖) − AKraus𝜀,𝐱(𝑊1, … ,𝑊𝑇))

⋅ Con𝑟
‖‖‖‖‖op

(163a)

≤
‖‖‖‖‖(

𝑇
∏
𝑖=0
𝑒𝑥𝑖(𝑊𝑖) −

𝑇
∏
𝑖=0
𝑝𝑥𝑖(exp(−𝜅𝑊𝑖/2)))

⋅ Con𝑟
‖‖‖‖‖op

+
‖‖‖‖‖(

𝑇
∏
𝑖=0
𝑝𝑥𝑖(exp(−𝜅𝑊𝑖/2)) − AKraus𝜀,𝐱(𝑊1, … ,𝑊𝑇))

⋅ Con𝑟
‖‖‖‖‖op

(163b)

≤
𝜀
2
+
𝜀
2
= 𝜀 , (163c)

from a combination of Claim 12.9 and Claim 12.10. The overall degree of AKraus𝜀,𝐱 is then given by 𝐽 ≤
3𝑑′′𝑇 and 𝑑′′ = 4 + 3

2 (ln(𝑇) + ln(1/𝜀)) to yield

deg(AKraus𝜀,𝐱) ≤ 𝑇 deg Flat 𝜀
2⋅2𝑇

,𝐽𝑀,𝑟 (164a)

≤ 100𝐽𝑀𝑇 (ln(1/𝜀) + 𝑇 + 1)(𝑟 + 1) (164b)
≤ 300𝑑′′𝑀𝑇 3 ln(1/𝜀)(𝑟 + 1) (164c)
≤ 𝑂(𝑀𝑇 3 ln(𝑇) ln2(1/𝜀)(𝑟 + 1)) , (164d)

completing the proof.

Theorem 12.1 will follow from the following lemma (Lemma 12.11) combined with Lemma 12.8 for the
choice of 𝑊𝑖 = 𝐆̃2

𝑦𝑖 , where 𝑦𝑖 corresponds to the query of the verification algorithm. The following lemma
applies triangle inequalities to bound the difference in the overall states when the oracle action is lightly
replaced.

Lemma 12.11. Let 𝐵𝐱,𝐲,𝐛 and 𝐵′𝐱,𝐲,𝐛 be two families of (possibly unnormalized) operators acting on the S

register. Define

|𝜓𝐵⟩
def= ∑

𝐲,𝐛 [
(𝐴𝐲,𝐛)A ⊗(

∑
𝐱
(𝐾𝐱)𝐲,𝐛 ⊗ 𝐵𝐱,𝐲,𝐛)]

𝐴 |0⟩A |init⟩US (165)

and |𝜓𝐵′⟩ similarly. Then for all suitably large 𝑛,

‖|𝜓𝐵⟩ − |𝜓𝐵′⟩‖ ≤ 22𝑛𝑇 max
𝐱,𝐲,𝐛

‖‖‖(𝐵𝐱,𝐲,𝐛 − 𝐵
′
𝐱,𝐲,𝐛) |init𝑆⟩

‖‖‖. (166)

66

Proof. We apply the triangle inequality twice (once for the sum over 𝐲 and then for the sum over 𝐱). We
use that ‖𝐾𝑥𝑖‖op ≤ 2 and that ‖|𝑦𝑖⟩⟨𝑦𝑖| ⋅ 𝐴‖op ≤ 1 as well as the submultiplicativity of the Schatten ∞-norm.

‖ |𝜓𝐵⟩ − |𝜓𝐵′⟩‖

=

‖‖‖‖‖‖‖‖‖

∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇

⎡
⎢
⎢
⎣
(𝐴𝐲,𝐛)A ⊗

⎛
⎜
⎜
⎝

∑
𝐱∈{0,1}|𝐛|

(𝐾𝐱)𝐲,𝐛 ⊗ (𝐵𝐱,𝐲,𝐛 − 𝐵′𝐱,𝐲,𝐛)
⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
𝐴 |0⟩A |init⟩US

‖‖‖‖‖‖‖‖‖

(167a)

≤ ∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇

‖‖‖‖‖‖

⎡
⎢
⎢
⎣
𝐴𝐲,𝐛 ⋅ 𝐴 |0⟩ ⊗

⎛
⎜
⎜
⎝

∑
𝐱∈{0,1}|𝐛|

(𝐾𝐱)𝐲,𝐛 |⊥⟩⊗2
𝑛
⊗ (𝐵𝐱,𝐲,𝐛 − 𝐵′𝐱,𝐲,𝐛) |init𝑆⟩

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

‖‖‖‖‖‖
(167b)

= ∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇

⎡
⎢
⎢
⎣

‖‖𝐴𝐲,𝐛 ⋅ 𝐴 |0⟩‖‖ ⋅
‖‖‖‖‖‖

⎛
⎜
⎜
⎝

∑
𝐱∈{0,1}|𝐛|

(𝐾𝐱)𝐲,𝐛 |⊥⟩⊗2
𝑛
⊗ (𝐵𝐱,𝐲,𝐛 − 𝐵′𝐱,𝐲,𝐛) |init𝑆⟩

⎞
⎟
⎟
⎠

‖‖‖‖‖‖

⎤
⎥
⎥
⎦

(167c)

≤ ∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇

⎡
⎢
⎢
⎣

‖‖𝐴𝐲,𝐛 ⋅ 𝐴 |0⟩‖‖ ⋅ ∑
𝐱∈{0,1}|𝐛|

‖‖‖((𝐾
𝐱)𝐲,𝐛 |⊥⟩⊗2

𝑛
⊗ (𝐵𝐱,𝐲,𝐛 − 𝐵′𝐱,𝐲,𝐛) |init𝑆⟩)

‖‖‖

⎤
⎥
⎥
⎦

(167d)

= ∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇

⎡
⎢
⎢
⎣

‖‖𝐴𝐲,𝐛 ⋅ 𝐴 |0⟩‖‖ ⋅
⎛
⎜
⎜
⎝

∑
𝐱∈{0,1}|𝐛|

‖‖‖(𝐾
𝐱)𝐲,𝐛 |⊥⟩⊗2

𝑛‖‖‖ ⋅
‖‖‖((𝐵𝐱,𝐲,𝐛 − 𝐵

′
𝐱,𝐲,𝐛) |init𝑆⟩)

‖‖‖

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

(167e)

≤ 2𝑇 ∑
𝐲∈({0,1}𝑛)𝑇

𝐛∈{0,1}𝑇
𝐱∈{0,1}|𝐛|

‖‖‖(𝐵𝐱,𝐲,𝐛 − 𝐵
′
𝐱,𝐲,𝐛) |init𝑆⟩

‖‖‖ (167f)

≤ 23𝑇+𝑛𝑇 max
𝐲,𝐛,𝐱

‖‖‖(𝐵𝐱,𝐲,𝐛 − 𝐵
′
𝐱,𝐲,𝐛) |init𝑆⟩

‖‖‖ (167g)

≤ 22𝑛𝑇 max
𝐲,𝐱,𝐛

‖‖‖(𝐵𝐱,𝐲,𝐛 − 𝐵
′
𝐱,𝐲,𝐛) |init𝑆⟩

‖‖‖ . (167h)

Here, eq. (167b) and eq. (167d) are applications of the triangle inequality, eq. (167c) and eq. (167e) are apply-
ing that norm of a tensor product is the tensor product of the norms, and eq. (167f) comes from bounding
‖‖𝐴𝐲,𝐛𝐴 |0⟩‖‖ ≤ 1, and ‖(𝐾𝐱)𝑦,𝑏 |⊥⟩⊗2

𝑛
‖ ≤ 2𝑇 using the bound on ‖‖𝐾𝑥𝑖‖‖op and the submultiplicativity of the

operator norm.

Finally, we proof Theorem 12.1.

Proof of Theorem 12.1. Notice that |init𝑆⟩ = Con0 |init𝑆⟩. We can directly apply Lemma 12.8 for the operators
𝑊𝑖 = 𝐆̃2

𝑦𝑖 with 𝑟 = 0. Notice that the 𝐆̃2
𝑦𝑖 are PSD, pairwise commute as they are all diagonal in the position

basis, and satisfy eq. (119b) as well as eq. (119a) with a constant 𝑀 by Fact 11.5. The result then follows
from Lemma 12.11 by choosing 𝜀 such that 𝜀 = 𝜄/(22𝑛𝑇).

67

12.1.2 Extending the approximation to the sandwiched operator

In this subsection, we prove Corollary 12.2.

Proof of Corollary 12.2. The proof consists of two hybrid arguments on the S register. We will use the ap-
proximation in Lemma 12.8 in both hybrids. The first hybrid uses Lemma 12.8 starting from a 0-condensate
to obtain an approximation AKraus𝜀,𝐱𝑇−𝑗 (𝐆̃2

𝑦1 , … 𝐆̃2
𝑦𝑇−𝑗) of the operators ∏𝑇−𝑗

𝑖=1 𝑒𝑥𝑖(𝐆̃2
𝑦𝑖) restricted to Con0.

Here, we define the substring 𝐱𝑘 = (𝑥𝑘 , … , 𝑥1). Note that these approximation are for products of 𝑒𝑥𝑖(𝐆̃2
𝑦𝑖)

of varying lengths. By Lemma 12.8 with error 𝜀/2𝑇 , we have that the degree of AKraus 𝜀
2𝑇 ,𝐱𝑇−𝑗 is bounded

by the following for all 𝑗 ,

deg(AKraus 𝜀
2𝑇 ,𝐱𝑇−𝑗) = 𝑂(𝑇

3 ln(𝑇) ln2(2𝑇/𝜀)) = 𝑂(𝑇 3 ln3(𝑇) ln2(1/𝜀)) . (168)

Now set 𝑟 = 2 deg(AKraus 𝜀
2𝑇 ,𝐱) ≥ 2max𝑗 deg(AKraus 𝜀

2𝑇 ,𝐱𝑇−𝑗), and define the following hybrids:

𝐷𝑗
def=
𝑇−𝑗+1

∏
𝑖=𝑇

Con𝑟 ⋅ 𝑒𝑥𝑖(𝐆̃
2
𝑦𝑖)

𝑇−𝑗

∏
𝑖=1
𝑒𝑥𝑖(𝐆̃

2
𝑦𝑖) |init𝑆⟩ . (169)

Note that the first 𝑇 − 𝑗 terms commute so the order of expansion of the product does not matter. Then
because the initial state is a 0-condensate,

‖‖‖‖‖(

1
∏
𝑖=𝑇

Con𝑟 ⋅ 𝑒𝑥𝑖(𝐆̃
2
𝑦𝑖) ⋅ Con𝑟 −

𝑇
∏
𝑖=1
𝑒𝑥𝑖(𝐆̃

2
𝑦𝑖))

|init𝑆⟩
‖‖‖‖‖
= ‖𝐷𝑇 − 𝐷0‖ ≤

𝑇
∑
𝑗=1

‖‖𝐷𝑗 − 𝐷𝑗−1‖‖ . (170)

Then, we have

‖‖𝐷𝑗 − 𝐷𝑗−1‖‖ ≤
‖‖‖‖‖
(id − Con𝑟) ⋅

𝑇−𝑗

∏
𝑖=1
𝑒𝑥𝑖(𝐆̃

2
𝑦𝑖) |init𝑆⟩

‖‖‖‖‖
(171a)

≤
𝜀
2𝑇

+ ‖‖‖(id − Con𝑟) ⋅ AKraus𝜀,𝐱𝑇−𝑗 (𝐆̃
2
𝑦1 , … , 𝐆̃

2
𝑦𝑇−𝑗) |init𝑆⟩

‖‖‖ (171b)

≤
𝜀
2𝑇

+ ‖‖‖(id − Con𝑟) ⋅ Con𝑟 ⋅ AKraus𝜀𝐱𝑇−𝑗 (𝐆̃
2
𝑦1 , … , 𝐆̃

2
𝑦𝑇−𝑗) |init𝑆⟩

‖‖‖ (171c)

≤
𝜀
2𝑇

. (171d)

Here we use the fact that AKraus𝜀,𝐱𝑇−𝑗 is a polynomial of degree at most 𝑟/2 in 𝐆̃2
𝑦 and therefore moves at

most 𝑟 bosons from the 0-momentum mode, so the state after applying AKraus𝜀,𝐱𝑇−𝑗 to the initial state is
an 𝑟-condensate. Next, since the condensate projectors commute, we have that for all 𝑚 ≥ 0 that

‖‖‖Con𝑚 ⋅ Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅 ⋅ Con𝑚

‖‖‖op =
‖‖‖Con𝑅 ⋅ Con𝑚 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑚 ⋅ Con𝑅
‖‖‖op ≤

‖‖‖Con𝑚 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑚

‖‖‖op . (172)

Therefore, by Fact 11.5, the operator𝑊 = Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅Con𝑅 satisfies eq. (119a) for all 𝑚 > 0 with a constant

𝑀 = 𝑂(1). Moreover, it is easy to check that 𝑊 is also PSD and satisfies eq. (119b) (again, because Con𝑅

and Con𝑚 commute). Hence, from Lemma 12.8 for 𝑇 = 1 (here, 𝑇 is the parameter in Lemma 12.8, not
the number of queries as in the rest of the paper) and a constant 𝑀 = 𝑂(1), there exists a polynomial
AKraus 𝜀

4𝑇 ,𝑥 such that:

AKraus 𝜀
4𝑇 ,𝑥(Con𝑅 ⋅ 𝐆̃

2
𝑦 ⋅ Con𝑅) ⋅ Con𝑟 ≈𝜀/4𝑇 𝑒𝑥(Con𝑅 ⋅ 𝐆̃

2
𝑦 ⋅ Con𝑅) ⋅ Con𝑟 , and (173a)

68

AKraus 𝜀
4𝑇 ,𝑥(𝐆̃

2
𝑦) ⋅ Con𝑟 ≈𝜀/4𝑇 𝑒𝑥(𝐆̃

2
𝑦) ⋅ Con𝑟 , (173b)

where the degree of AKraus 𝜀
4𝑇 ,𝑥 will be 𝑂((𝑟 + 1) ln(4𝑇/𝜀)). Since this holds for all 𝑅 ≥ 𝑟 , it will hold for

𝑅 = 𝑟 + 2 deg(AKraus 𝜀
4𝑇 ,𝑥) = 𝑟 + 𝑂((𝑟 + 1) ln(4𝑇/𝜀)). We now proceed with the second hybrid. Let 𝐶𝑗 be

defined as

𝐶𝑗
def=
𝑇−𝑗+1

∏
𝑖=𝑇

Con𝑟 ⋅ 𝑒𝑥𝑖(Con𝑅 ⋅ 𝐆̃
2
𝑦𝑖 ⋅ Con𝑅) ⋅ Con𝑟 ⋅

0
∏
𝑖=𝑇−𝑗

Con𝑟 ⋅ 𝑒𝑥𝑖(𝐆̃
2
𝑦𝑖) ⋅ Con𝑟 . (174)

Then ‖𝐶𝑇 − 𝐶0‖ equals

‖‖‖‖‖

1
∏
𝑖=𝑇

Con𝑟 ⋅ 𝑒𝑥𝑖(Con𝑅 ⋅ 𝐆̃
2
𝑦𝑖 ⋅ Con𝑅) ⋅ Con𝑟 −

1
∏
𝑖=𝑇

Con𝑟 ⋅ 𝑒𝑥𝑖(𝐆̃
2
𝑦𝑖) ⋅ Con𝑟

‖‖‖‖‖op
≤

𝑇
∑
𝑗=1

‖‖𝐶𝑗 − 𝐶𝑗−1‖‖op . (175)

Then, we find

‖‖𝐶𝑗 − 𝐶𝑗−1‖‖op (176a)

≤ ‖‖‖Con𝑟 ⋅ 𝑒𝑥𝑇−𝑗+1(Con𝑅 ⋅ 𝐆̃
2
𝑦𝑇−𝑗+1 ⋅ Con𝑅) ⋅ Con𝑟 − Con𝑟 ⋅ 𝑒𝑥𝑇−𝑗+1(𝐆̃

2
𝑦𝑇−𝑗+1) ⋅ Con𝑟

‖‖‖op (176b)

≤ ‖‖‖(𝑒𝑥𝑇−𝑗+1(Con𝑅 ⋅ 𝐆̃
2
𝑦𝑇−𝑗+1 ⋅ Con𝑅) − AKraus 𝜀

4𝑇 ,𝑥𝑇−𝑗+1(Con𝑅 ⋅ 𝐆̃
2
𝑦𝑇−𝑗+1 ⋅ Con𝑅)) ⋅ Con𝑟

‖‖‖op
+‖‖‖(𝑒𝑥𝑇−𝑗+1(𝐆̃

2
𝑦𝑇−𝑗+1) − AKraus 𝜀

4𝑇 ,𝑥𝑇−𝑗+1(𝐆̃
2
𝑦𝑇−𝑗+1)) ⋅ Con𝑟

‖‖‖op

+
‖‖‖‖‖‖

Con𝑟 ⋅ AKraus 𝜀
4𝑇 ,𝑥𝑇−𝑗+1(𝐆̃

2
𝑦𝑇−𝑗+1) ⋅ Con𝑟

−Con𝑟 ⋅ AKraus 𝜀
4𝑇 ,𝑥𝑇−𝑗+1(Con𝑅 ⋅ 𝐆̃

2
𝑦𝑇−𝑗+1 ⋅ Con𝑅) ⋅ Con𝑟

‖‖‖‖‖‖op

(176c)

≤
𝜀
4𝑇

+
𝜀
4𝑇

+ 0 (176d)

≤
𝜀
2𝑇

, (176e)

for any 𝑅 ≥ 𝑟 + 2 deg(AKraus 𝜀
4𝑇 ,𝑥𝑇−𝑗). Here, in eq. (176c), observe that when the polynomials AKraus 𝜀

4𝑇 ,𝑥

are being invoked, the state remains a 𝑟 + 2 deg(AKraus 𝜀
4𝑇 𝑥𝑇−𝑗) ≤ 𝑅-condensate so the final term in the

3-fold expression is 0. We are also using the definitions of 𝐶𝑗 and 𝐶𝑗−1, together with standard properties
of the operator norm, and the polynomial approximations from eq. (173a) and Lemma 12.8. The result then
follows from choosing 𝜀 = 𝜄/(22𝑛𝑇) and applying Lemma 12.11. We then upper bound polylog(𝑇) ≤ 𝑂(𝑇)
for notational convenience.

12.2 Proving the quasi-even property

In this section, we prove that the purified state of any verification algorithm making 𝑇 -queries to the 𝑈
oracle is also incredibly close to a 𝑣/4-quasi-even state, i.e., that the state is almost entirely supported
on momentum Fock states that have at most 𝑣/4 modes occupied by an odd number of bosons. The proof
follows the general framework of [HM23] for unconstrained search. At a high level, the authors first define
a sequence of projectors Π0 ⪯ Π1 ⪯ …, and then show that querying their oracle maps a state supported
on Π𝑘 to a state that it mostly supported to Π𝑘 but with an extremely small support on Π𝑘+1.

69

Our proof will utilize their framework, with the projectors QE𝑜 playing the role of the Π𝑘 from [HM23].
The main goal of the section will be to argue that the double-hopping operator is very unlikely to create
unpaired bosons. At a high level, the idea is to notice that the double-hopping operator 𝐇̃𝑦 picks two
momentum modes 𝑥 and 𝑥′, and moves two bosons from modes 𝑥 and 𝑥′ to 𝑥 ⊕ 𝑦 and 𝑥′ ⊕ 𝑦, with a
normalization that corresponds roughly to the square root of product of the number of bosons that occupy
modes 𝑥 , 𝑥′, 𝑥 ⊕𝑦, and 𝑥′⊕𝑦. Since the “weight” of a pair of modes corresponds to the number of bosons
in the modes, when we apply the double-hopping operator to a condensate, most of the mass of the post-
operation state corresponds to moving bosons in or out of the 0-momentum mode. This mostly preserves
the “oddness” of the quasi-even condensate.

A subtle difference between our analysis is the fact that the oracle from [HM23] can only output states
from Π𝑘+1 when given a state in Π𝑘 as input, which means that concluding the proof only requires a simple
inductive argument. Oracle queries in our setting will roughly correspond to applying e−𝜅𝐇̃𝑦 for some 𝑦.
While 𝐇̃𝑦 itself only “moves” 4 bosons, the Taylor series of e−𝜅𝐇̃𝑦 includes arbitrarily high powers of 𝐇̃𝑦 ,
although we can bound these tails using a convenient expansion of the exponential from perturbation
theory.

12.2.1 The double-hopping operator is almost always paired on condensates

The central premise of this next subsection is that the action of the double-hopping operator on condensates
is dominated by the action of hopping two bosons into or out of the 0-momentum mode. This is because
the action of a creation or annihilation operator on a Fock state is proportional to the number of bosons
in said mode. Since almost all the bosons are in the 0-momentum mode, it follows that the behavior of the
0-momentum mode dominates the actions. However, it is important to note that ignoring the other modes
would only produce an approximation that would be too coarse for the sampling probability upper bounds
we need to achieve. Nevertheless, we can show that on a quasi-even condensate, the action will, with
almost certainty, produce another quasi-even condensate where the “oddness” is unlikely to be changed.
We emphasize that the “invariance” we prove is only true if the original state is a condensate. To see
otherwise, consider a state where the 𝓁 bosons are paired up in 𝓁/2 distinct momentum modes. Then the
action of a double-hopping operator will almost certainly increase the “oddness” of the state by 2.

Concretely, in this subsection, we show that applying one double-hopping operator to a quasi-even
condensate produces another quasi-even condensate, where the oddness is unlikely to be changed. This
section captures the main idea behind the proof of the quasi-even property.

We first define the 𝑦-double difference set of a tuple 𝑤 and prove a bound on the number of elements
of the double-difference set. For simplicity, we will use the following notation:

Δ(𝑦)
𝑥,𝑥′

def= 1𝑥⊕𝑦 + 1𝑥′⊕𝑦 − 1𝑥 − 1𝑥′ ∈ ℤ2𝑛 . (177)

Second, we recall the definition of QEC𝑟,𝑜 as the projector onto momentum Fock states that are ≤ 𝑟 con-
densates with ≤ 𝑜 many non-zero modes having an odd number of bosons. And Con𝑟 and QE𝑜 are the
projectors only ensuring the former and latter properties, respectively. Lastly, QEC𝑟,=𝑜 and QE=𝑜 are the
projectors requiring exactly 𝑜 many non-zero modes.

Definition 12.12 (Double difference set). Given 𝑦 ∈ {0, 1}𝑛 and 𝑦 ≠ 0𝑛, define the 𝑦-double difference set of

70

a tuple 𝑤 as follows.

diff2𝑦(𝑤)
def=
{
𝑢 ∈ ℤ2𝑛

≥0 ∶ ∃ (𝑥, 𝑥′) with 𝑥 ∉ {𝑥′, 𝑥′ ⊕ 𝑦} and 𝑤 = 𝑢 + Δ(𝑦)
𝑥,𝑥′

}
. (178)

Furthermore, when 𝑢 ∈ diff2𝑦(𝑤), we write (𝑥, 𝑥′) = diff2𝑦(𝑢, 𝑤) to represent the choice of 𝑥, 𝑥′ that map from
𝑤 to 𝑢. Without loss of generality, we take 𝑥 to be the lower of the two in lexicographical ordering (since 𝑥 ≠ 𝑥′

by assumption).

We make the following observation.

Claim 12.13. For every (𝑅, 𝑜)-quasi-even condensate 𝑢, and every 𝑦 ∈ {0, 1}𝑛 and 𝑦 ≠ 0𝑛,

|||diff
2
𝑦(𝑢)

||| ≤ (𝑅 + 1)2 . (179)

Proof. Since 𝑢 is a condensate with at most 𝑅 bosons not in the 0-momentum mode, there are at most 𝑅+1
ways to choose 𝑥 and 𝑅 + 1 was to choose 𝑥′ so that the resulting tuple has non-negative entries after
adding Δ(𝑦)

𝑥,𝑥′ , because they have to be taken from modes of 𝑢 that are strictly positive. We will typically
take the crude upper bound of (𝑅 + 1)2 ≤ 2𝑅2 for suitably large 𝑅.

Lemma 12.14. For every 𝑅 ∈ [𝓁], 𝑦 ∈ {0, 1}𝑛, with 𝑦 ≠ 0𝑛, the following holds.

‖‖‖‖‖‖
∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ 𝐇̃𝑦 ⋅ QEC(𝑅,=𝑜)

‖‖‖‖‖‖op
≤
𝑅5√
𝓁
. (180)

Proof. We argue that the operator norm is small by showing that for every input state |𝜓⟩, the norm of the
state shrinks by an appropriate factor. Since there are at most 𝑅 choices of 𝑜 that we are considering, it
will suffice to bound the norm of (id−QE𝑜) ⋅ 𝐇̃𝑦 |𝜓⟩ for a state |𝜓⟩ supported on QEC(𝑅,=𝑜) for a fixed 𝑜 and
then apply the Cauchy-Schwarz inequality at the end. We can write |𝜓⟩ as a superposition of momentum
Fock states |𝑢⟩, where 𝑢 is a (𝑅, = 𝑜)-quasi-even condensate, as follows,

|𝜓⟩ = ∑
𝑢∈QEC(𝑅,=𝑜)

𝛼𝑢 |𝑢⟩ . (181)

Expanding out the definition of the double-hopping operator, after applying 𝐇̃𝑦 , we have the following
state.

𝐇̃𝑦 |𝜓⟩ = ∑
𝑢∈QEC(𝑅,=𝑜)

𝛼𝑢(
1
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1) |𝑢 + Δ(𝑦)

𝑥,𝑥′⟩)
. (182)

Applying the projector onto states that have 𝑜′ ≠ 𝑜 many odd entries, will remove all terms in the sum
that correspond to 𝑥 = 𝑥′ or 𝑥 = 𝑥′ ⊕ 𝑦, as these never change the number of odd indices. Thus, we can
re-group the terms and use the definition of the double difference set to get the following.

(id − QE=𝑜) ⋅ 𝐇̃𝑦 |𝜓⟩ (183a)

71

= ∑
𝑢∈QEC(𝑅,=𝑜)

(
𝛼𝑢
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛

𝛿(𝑢 + Δ(𝑦)
𝑥,𝑥′ ∉ QE=𝑜)

√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1) |𝑢 + Δ(𝑦)

𝑥,𝑥′⟩)
(183b)

= ∑
𝑢∈QEC(𝑅,=𝑜)

𝛼𝑢
𝓁

∑
𝑥,𝑥′∈{0,1}𝑛
𝑥∉{𝑥′,𝑥′⊕𝑦}

𝛿(𝑢 + Δ(𝑦)
𝑥,𝑥′ ∉ QE=𝑜)

√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1) |𝑢 + Δ(𝑦)

𝑥,𝑥′⟩ (183c)

=
1
𝓁

∑
𝑤∈QEC(𝑅+2,𝑜+2)

𝛿(𝑤 ∉ QE=𝑜)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
𝑢∈QEC(𝑅,=𝑜)
𝑢∈diff2𝑦 (𝑤)

(𝑥,𝑥′)=diff2𝑦 (𝑢,𝑤)

2𝛼𝑢
√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|𝑤⟩ . (183d)

Here, we first applied the definition of 𝐇̃𝑦 and used the fact that QE=𝑜 is diagonal in the momentum Fock
basis. Then we use the fact that whenever 𝑥 = 𝑥′ or 𝑥′ ⊕𝑦, the number of odd indices is preserved, which
means we can remove those terms from the sum. Then we regrouped terms that have the same value of
𝑢 + Δ(𝑦)

𝑥,𝑥′ , noting that every pair (𝑥, 𝑥′) = diff2𝑦(𝑢, 𝑤) appears twice in the sum over 𝑥 and 𝑥′ in 𝐇̃𝑦 , which
gives us the multiplicative factor of 2.

We now bound the squared norm of this state, using the fact that the |𝑤⟩ are orthogonal to each other,
and the number of 𝑢 in diff2𝑦(𝑤) is bounded.

‖‖‖(id − QE=𝑜) ⋅ 𝐇̃𝑦 |𝜓⟩
‖‖‖
2

(184a)

=
1
𝓁2

‖‖‖‖‖‖‖‖‖‖‖‖‖

∑
𝑤∈QEC(𝑅+2,𝑜+2)

𝛿(𝑤 ∉ QE=𝑜)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
𝑢∈QEC(𝑅,=𝑜)
𝑢∈diff2𝑦 (𝑤)

(𝑥,𝑥′)=diff2𝑦 (𝑢,𝑤)

2𝛼𝑢
√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|𝑤⟩

‖‖‖‖‖‖‖‖‖‖‖‖‖

2

(184b)

=
4
𝓁2

∑
𝑤∈QEC(𝑅+2,𝑜+2)

𝛿(𝑤 ∉ QE=𝑜)

|||||||||||||

∑
𝑢∈QEC(𝑅,=𝑜)
𝑢∈diff2𝑦 (𝑤)

(𝑥,𝑥′)=diff2𝑦 (𝑢,𝑤)

𝛼𝑢
√
𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1)

|||||||||||||

2

(184c)

≤
4
𝓁2

∑
𝑤∈QEC(𝑅+2,𝑜+2)

∑
𝑢∈QEC(𝑅,=𝑜)
𝑢∈diff2𝑦 (𝑤)

2𝑅2 ⋅ 𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1) ⋅ |𝛼𝑢|2 (184d)

≤
8
𝓁2

∑
𝑤∈QEC(𝑅+2,𝑜+2)

∑
𝑢∈diff2𝑦 (𝑤)

𝓁𝑅5 ⋅ |𝛼𝑢|2 (184e)

≤
8
𝓁2

∑
𝑢
|𝛼𝑢|2𝓁𝑅5

|||diff
2
𝑦(𝑢)

||| (184f)

≤
16𝑅7

𝓁
. (184g)

72

Here, in the first line, we expand the definition of the state from eq. (183d). Then we use the definition of the
squared norm with the fact that |𝑤⟩ are orthogonal to each other. Then we use Cauchy-Schwarz to bound
the square of the sum by 2𝑅2 times the sum of the squares, as there are at most (𝑅 + 3) ≤ 2𝑅2 elements of
diff2𝑦(𝑤), applying Theorem 12.13 to a 𝑅 + 2 condensate. In the second to last line, we switch the order of
the sums and use the fact that diff2𝑦 is reflexive — i.e., 𝑤 ∈ diff2𝑦(𝑢) ⇔ 𝑢 ∈ diff2𝑦(𝑤). Then, we again use
the fact that there are at most 2𝑅2 elements in diff2𝑦(𝑢) and that the |𝛼𝑢|2 sum to 1. Going from eq. (184d)
to the next line, we note that by the definition of diff2𝑦 , for every (𝑥, 𝑥′) ∈ diff2𝑦(𝑤), at most one of 𝑥 , 𝑥′,
𝑥 ⊕𝑦 and 𝑥′⊕𝑦 can be 0 since 𝑦 ≠ 0𝑛. Therefore, at least three of the entries 𝑢𝑥 , 𝑢𝑥′ , 𝑢𝑥⊕𝑦 +1 and 𝑢𝑥′⊕𝑦 +1
can be bounded from above by 𝑅, the number of non-zero bosons, and the fourth one can be bounded by
𝓁, the total number of bosons. Therefore, for all 𝑥, 𝑥′ ∈ diff2𝑦(𝑢, 𝑤), 𝑢𝑥𝑢𝑥′(𝑢𝑥⊕𝑦 + 1)(𝑢𝑥′⊕𝑦 + 1) ≤ 𝓁𝑅3.

Taking the square root of this expression gives us the following bound for all 𝑜.

‖‖‖(id − QE=𝑜) ⋅ 𝐇̃𝑦 ⋅ QEC(𝑅,=𝑜)
‖‖‖op ≤

4𝑅7/2√
𝓁
. (185)

Since 𝑜 can only be as large as 𝑅, with one more application of the triangle inequality, we can bound the
norm of the sum over all 𝑜 from 0 to 𝑅 by 4𝑅9/2/

√
𝓁. To make the numbers cleaner, we take 𝑅5/

√
𝓁 as an

upper bound.

We note that the above bound holds for 𝐇̃𝑦 , but for the next section we will want to apply it to 𝐆̃𝑦 =
𝐇̃𝑦 + id, which is the positive semi-definite operator that corresponds to applying 𝛾 (𝑆)𝑦 in the position Fock
basis.

Corollary 12.15. For all 𝑅 ∈ [𝓁] and 𝑦 ∈ {0, 1}𝑛 with 𝑦 ≠ 0𝑛, the following holds

‖‖‖‖‖‖
∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ 𝐆̃2
𝑦 ⋅ QEC(𝑅,=𝑜)

‖‖‖‖‖‖op
≤
𝑅5
√
𝓁
. (186)

Proof. Using, 𝐆̃2
𝑦 = 𝐇̃𝑦 + id, we can apply Lemma 12.14 in a straight-forward way as follows.

‖‖‖‖‖‖
∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ 𝐆̃2
𝑦 ⋅ QEC(𝑅,=𝑜)

‖‖‖‖‖‖op
(187a)

=
‖‖‖‖‖‖
∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ 𝐇̃𝑦 ⋅ QEC(𝑅,=𝑜) + ∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ QE=𝑜 ⋅ Con𝑅
‖‖‖‖‖‖op

(187b)

=
‖‖‖‖‖‖
∑
𝑜∈[𝑅]

(id − QE=𝑜) ⋅ 𝐇̃𝑦 ⋅ QEC(𝑅,=𝑜)

‖‖‖‖‖‖op
(187c)

≤
𝑅5
√
𝓁
. (187d)

Here, we simply expand out the definition of 𝐆̃2
𝑦 and use the fact that QE=𝑜 is a projector and therefore

(id − QE=𝑜)QE=𝑜 = 0.

73

12.2.2 Dyson series expansion of the exponential

The previous section demonstrates that applying the double-hopping operator on a quasi-even condensate
is likely to preserve the number of odd entries. Unfortunately, although applying the double-hopping oper-
ator does not yield a state with high overlap on states with ≠ 𝑜 odd entries, it does potentially increase the
norm of the input state within the = 𝑜 subspace. This is problematic to a naive inductive argument because
after applying many double-hopping operators, one might have to scale the bound from Lemma 12.14 by
the growing norm of the state.

On the other hand, we expect that this is not a fundamental problem, because the operators that the
algorithm applies are unitary, and even more so, operators of the form exp(−𝐆̃2

𝑦) clearly have bounded
operator norm. In this section, we show how to apply the Dyson series for the exponential function to lift
Lemma 12.14 to certain functions of the double-hopping operator.

Fact 12.16 (Application of Duhamel’s principle). The following identity holdsa for all matrices 𝐴 and 𝑉 ,
and 𝑡 ≥ 0,

exp (−𝑡 ⋅ (𝐴 + 𝑉)) = exp (−𝑡 ⋅ 𝐴) − ∫
0≤𝑠≤𝑡

d𝑠 exp (−(𝑡 − 𝑠) ⋅ (𝐴 + 𝑉)) ⋅ 𝑉 ⋅ exp (−𝑠 ⋅ 𝐴) . (188)

Applying this identity repeatedly gives us the following Dyson series for a small perturbation to 𝐴.

Fact 12.17 (Dyson’s formula for the exponential function). For all matrices 𝐴 and 𝑉 and 𝜅 ≥ 0, we can
express exp (−𝜅 ⋅ (𝐴 + 𝑉)) − exp (−𝜅 ⋅ 𝐴) as

∞

∑
𝑘=1

(−1)𝑘 ∫
0≤𝑠1≤…≤𝑠𝑘≤𝜅

d𝐬 exp (−(𝜅 − 𝑠𝑘)𝐴) ⋅ 𝑉 ⋅ exp (−(𝑠𝑘 − 𝑠𝑘−1)𝐴) ⋅ 𝑉 …𝑉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑘 times

exp (−𝑠1𝐴) . (189)

The goal of Dyson’s formula is to expand the exponential exp (−𝜅 ⋅ (𝐴 + 𝑉)) in such a way that the
expansion only includes products of the term 𝑉 and exponentials of 𝐴. The use case is when 𝑉 is a small
perturbation applied with 𝐴, and Dyson’s formula allows us to expand the exponential and apply bounds
we know about 𝑉 . In mathematical physics, 𝐴 is sometimes called the “free” part of the Hamiltonian, and
𝑉 the “interacting” part.

aTo prove this statement, construct a function 𝑓 such that 𝑓 (0) = e−𝑡𝐴 and 𝑓 (𝑡) = e−𝑡(𝐴+𝑉). Then the proof follows
by observing 𝑓 (𝑡) = 𝑓 (0) + ∫ 𝑡

0 𝑓 ′(𝑠)d𝑠.

We apply this to show that the exponential of the double-hopping operator does not change the number
of odd entries, except with low probability.

Lemma 12.18. The following bound holds for all 𝜅 ≤ 1, 𝑅 ≤ 𝓁1/10/2, and 1 ≤ 𝑑 ≤ 𝑅.

‖‖‖‖‖‖
∑
𝑜∈[𝑅]

QE≥𝑜+𝑑 ⋅ exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅)) ⋅ QE𝑜

‖‖‖‖‖‖op
≤ (

2𝑅5√
𝓁)

𝑑/4

. (190)

74

Proof. We use Fact 12.17 applied to the following decomposition of Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅,

Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅 = ∑

𝑜∈[𝑅]
QEC(𝑅,=𝑜) ⋅ 𝐆̃2

𝑦 ⋅ QEC(𝑅,=𝑜)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴

+ ∑
𝑜,𝑜′∈[𝑅]
𝑜≠𝑜′

QEC(𝑅,=𝑜) ⋅ 𝐆̃2
𝑦 ⋅ QEC(𝑅,=𝑜′)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉

. (191)

We note that 𝑉 is equal to Con𝑅∑𝑜′(id − QE=𝑜′) ⋅ 𝐆̃2
𝑦 ⋅ QE=𝑜′ , whose operator norm is bounded by Corol-

lary 12.15. We further note that using the fact that 𝐆̃2
𝑦 only moves 2 bosons (and therefore affects at most

4 momentum modes), and applying the definition of 𝐴, we have that

𝑉 ⋅ QE𝑜 = QE𝑜+4 ⋅ 𝑉 ⋅ QE𝑜 and 𝐴 ⋅ QE𝑜 = QE𝑜 ⋅ 𝐴 ⋅ QE𝑜 . (192)

Repeatedly pushing the QE𝑜 operator through, this implies that QE≥𝑜+𝑑 ⋅e−𝜅𝐴 ⋅QE𝑜 = 0 and for all 𝑑′ < 𝑑/4
and 0 ≤ 𝑠1 ≤ … ≤ 𝑠𝑑′ ≤ 𝜅,

QE≥𝑜+𝑑 ⋅ exp (−(𝜅 − 𝑠𝑑′) ⋅ 𝐴) ⋅ 𝑉 …𝑉⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑑′ times

⋅exp (−𝑠1 ⋅ 𝐴) ⋅ QE𝑜 = 0 . (193)

Now applying Fact 12.17 with 𝐴 and 𝑉 as defined in the equation above, we have the following bound on
the norm for a fixed 𝑜,

‖‖‖QE≥𝑜+𝑑 ⋅ exp (−𝜅 (Con𝑅 ⋅ 𝐆̃
2
𝑦 ⋅ Con𝑅)) ⋅ QE𝑜

‖‖‖op (194a)

=
‖‖‖‖‖‖
∑
𝑘≥𝑑/4

(−1)𝑘 ∫
0≤𝑠1≤…≤𝑠𝑘≤𝜅

d𝐬 QE≥𝑜+𝑑 ⋅ exp (−(𝜅 − 𝑠𝑘) ⋅ 𝐴) ⋅ 𝑉 …𝑉 ⋅ exp (−𝑠1 ⋅ 𝐴) ⋅ QE𝑜

‖‖‖‖‖‖op
(194b)

≤ ∑
𝑘≥𝑑/4

∫
0≤𝑠1≤…≤𝑠𝑘≤𝜅

d𝐬 ‖‖QE≥𝑜+𝑑 ⋅ exp (−(𝜅 − 𝑠𝑘) ⋅ 𝐴) ⋅ 𝑉 …𝑉 ⋅ exp (−𝑠1 ⋅ 𝐴) ⋅ QE𝑜‖‖op (194c)

≤ ∑
𝑘≥𝑑/4

∫
0≤𝑠1≤…≤𝑠𝑘≤𝜅

d𝐬 ‖𝑉 ‖𝑘op (194d)

≤ ∑
𝑘≥𝑑/4

(
𝑅5√
𝓁)

𝑘

=
1

1 − 𝑅5/
√
𝓁 (

𝑅5√
𝓁)

⌈𝑑/4⌉

(194e)

≤ 2(
𝑅5√
𝓁)

𝑑/4

(194f)

≤ (
2𝑅5√
𝓁)

𝑑/4

. (194g)

Here, we first apply Dyson’s formula. Recall that 𝐆̃2
𝑦 can only increase the number of odd indices by

4. Moreover, by definition, 𝐴 does not change the number of odd indices and hence neither does any
exponential in 𝐴. Therefore, since the expression is sandwiched between QE≥𝑜+𝑑 and QE𝑜 , the only way
to get a non-zero output is to be a product where the number of 𝑉 terms is at least 𝑑/4. This means that
(1) we can eliminate exp(−𝜅 ⋅ 𝐴) arising from Dyson’s formula, as well as (2) start the sum at 𝑘 ≥ 𝑑/4.
Then we apply the triangle inequality to move the norm into the sum and integral. Then we use the fact

75

that because 𝐆̃2
𝑦 is a positive operator (and sandwiching a positive operator by projectors yields a positive

operator), exp (−𝑡 ⋅ 𝐴) has operator norm at most 1. We then use the fact that the operator norm is sub-
multiplicative and Corollary 12.15 bounds the operator norm of 𝑉 by 𝑅5√

𝓁 . Finally, we use the fact that
∫0≤𝑠1≤…≤𝑠𝑘≤𝜅 d𝑠 = 𝜅

𝑘/𝑘! ≤ 1 whenever 𝜅 ≤ 1 and bound the geometric series.

12.2.3 Recursive bounds on the oddness of products of operators

The previous lemma bounds the probability that a state having 𝑜 odd indices ends up in the subspace of
momentum Fock states with 𝑜 + 𝑑 many odd indices, for every 𝑑. We can apply a generalization of the
stars-and-bars style counting argument to show that the probability of applying the operator many times
does not increase the number of odd indices either.

Lemma 12.19. LetΠ0 ⪯ Π1 ⪯ … be a sequence of projectors on a Hilbert space. Let𝐴1, … , 𝐴𝑡 be a family of
operators on such that ‖𝐴𝑖‖op ≤ 1. Furthermore, suppose that for all integers 𝑎, 𝑏 ≥ 0, ‖(id − Π𝑎+𝑏)𝐴𝑖Π𝑎‖op ≤
𝜀𝑏+1. Then for all integers 𝜆 ≥ 0 and states |𝜓⟩ such that Π0 |𝜓⟩ = |𝜓⟩,

‖(id − Π𝜆)𝐴𝑡 …𝐴1 |𝜓⟩‖ ≤ (
𝑡 + 𝜆
𝑡 − 1)

𝜀𝜆+1 . (195)

Proof. The statement for 𝑡 = 1 is trivially true. Next define Π−1 = 0 and for 𝑗 = 0, … , 𝜆, Δ𝑗 = Π𝑗 − Π𝑗−1.
Observe that Δ𝑗 = Π𝑗 (id − Π𝑗−1) by containment of the projectors. Then, write

‖(id − Π𝜆)𝐴𝑡+1 …𝐴1 |𝜓⟩‖ ≤
𝜆

∑
𝑗=0

‖‖(id − Π𝜆)𝐴𝑡+1Δ𝑗𝐴𝑡 …𝐴1Π0 |𝜓⟩‖‖
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(𝐴)

+ ‖(id − Π𝜆)𝐴𝑡+1(id − Π𝜆)𝐴𝑡 …𝐴1Π0 |𝜓⟩‖⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝐵)

(196)

We handle each of the terms separately. To bound (𝐵), we can use induction to bound

‖(id − Π𝜆)𝐴𝑡+1(id − Π𝜆)𝐴𝑡 …𝐴1Π0 |𝜓⟩‖ ≤ ‖(id − Π𝜆)𝐴𝑡+1(id − Π𝜆)‖op ⋅ ‖(id − Π𝜆)𝐴𝑡 …𝐴1Π0‖op (197a)

≤ ‖𝐴𝑡+1‖⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
≤1

⋅(
𝑡 + 𝜆
𝑡 − 1)

𝜀𝜆+1 . (197b)

For the terms in (𝐴), by induction,

𝜆

∑
𝑗=0

‖‖(id − Π𝜆)𝐴𝑡+1Δ𝑗𝐴𝑡 …𝐴1Π0‖‖op =
𝜆

∑
𝑗=0

‖‖(id − Π𝜆)𝐴𝑡+1Π𝑗 (id − Π𝑗−1)𝐴𝑡 …𝐴1Π0‖‖op (198a)

≤
𝜆

∑
𝑗=0

‖‖(id − Π𝜆)𝐴𝑡+1Π𝑗 ‖‖op ⋅ ‖‖(id − Π𝑗−1)𝐴𝑡 …𝐴1Π0‖‖op (198b)

≤
𝜆

∑
𝑗=0
𝜀𝜆−𝑗+1 ⋅ (

𝑡 + 𝑗 − 1
𝑡 − 1) ⋅ 𝜀𝑗 (198c)

76

= (
𝑡 + 𝜆
𝑡)𝜀

𝜆+1. (198d)

Adding up all the terms

(𝐴) + (𝐵) ≤ ((
𝑡 + 𝜆
𝑡) + (

𝑡 + 𝜆
𝑡 − 1))

𝜀𝜆+1 = (
𝑡 + 𝜆 + 1

𝑡)𝜀
𝜆+1 . (199)

completing the inductive proof.

12.2.4 Wrapping up the proof

In this section, we apply the previous two lemmas to show that algorithms that make polynomial in 𝑛
queries to the 𝑈 oracle are exponentially close to the QE𝑣/4 subspace.

Lemma 12.20. The following bound holds for all 𝑦 ∈ {0, 1}𝑛, with 𝑦 ≠ 0𝑛, 𝜅 ≤ 1, 𝑅 ≤ 𝓁1/10/2 and 1 ≤ 𝑑 ≤ 𝑅,

‖‖‖‖‖
∑
𝑜

QE≥𝑜+𝑑 ⋅
√
1 −

1
2
exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)) ⋅ QE𝑜
‖‖‖‖‖op

≤ (
64𝑅5√

𝓁)

𝑑/4

. (200)

Proof. We perform the proof by applying the previous two lemmas to the polynomial expansion of the
square root. The Taylor/binomial expansion of the square root is given by

√
1 + 𝑥 =

∞
∑
𝑘=0

(
1/2
𝑘)𝑥

𝑘 . (201)

Applying it to the expression in eq. (200), we have the following
√
1 −

1
2
exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)) =
∞
∑
𝑘=0

(
1/2
𝑘)(

−1
2)

𝑘

exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅))

𝑘
. (202)

We can bound the norm in eq. (200) using Lemma 12.19, with 𝜆 = 𝑑 − 1, projectors Π0 = QE𝑜 ⪯ Π1 =
QE𝑜+1 ⪯ … ⪯ QE𝑜+𝑑−1, and 𝐴1 = … = 𝐴𝑡 = exp(−𝜅(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)).

‖‖‖‖‖
QE≥𝑜+𝑑 ⋅

√
1 −

1
2
exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)) ⋅ QE𝑜
‖‖‖‖‖op

(203a)

=
‖‖‖‖‖

∞
∑
𝑘=0

(
1/2
𝑘)(

−1
2)

𝑘

⋅ QE≥𝑜+𝑑 ⋅ exp (−𝜅 (Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅))

𝑘
⋅ QE𝑜

‖‖‖‖‖op
(203b)

≤
∞
∑
𝑘=1

||||(
1/2
𝑘)

|||| (
1
2)

𝑘

⋅ ‖‖‖QE≥𝑜+𝑑 ⋅ exp (−𝜅 (Con𝑅 ⋅ 𝐆̃
2
𝑦 ⋅ Con𝑅))

𝑘
⋅ QE𝑜

‖‖‖op (203c)

≤ (
2𝑅5√
𝓁)

𝑑/4 ∞
∑
𝑘=1

||||(
1/2
𝑘)

|||| (
1
2)

𝑘

(
𝑘 + 𝑑
𝑘 − 1)

(203d)

77

≤ (
2𝑅5√
𝓁)

𝑑/4

⋅ 2𝑑+1 (203e)

≤ (
64𝑅5√

𝓁)

𝑑/4

. (203f)

In the first line, we apply the Taylor expansion of the square root from before, noting that the norm in the
𝑘 = 0 term in eq. (203c) is ‖‖QE≥𝑜+𝑑 ⋅ QE𝑜‖‖op = 0. Then, we apply the triangle inequality. In the third line,
we apply Lemma 12.19. together with the bound of (2𝑅5/

√
𝓁)𝑑/4 from Lemma 12.18. For the final line, we

bound the infinite sum by

∞
∑
𝑘=1

||||(
1/2
𝑘)

|||| (
1
2)

𝑘

(
𝑘 + 𝑑
𝑘 − 1)

≤
∞
∑
𝑘=1

(
1
2)

𝑘

(
𝑘 + 𝑑
𝑘 − 1)

(204a)

=
1
2

∞
∑
𝑘=0

(
1
2)

𝑘

(
(𝑑 + 2) + 𝑘 − 1

𝑘) (204b)

=
1
2

∞
∑
𝑘=0

(−
1
2)

𝑘

(
−(𝑑 + 2)

𝑘) (204c)

=
1
2 (

1 −
1
2)

−𝑑−2

(204d)

= 2𝑑+1 . (204e)

Here, in the first line, we use the fact that |||(
1/2
𝑘)

||| ≤ 1 for all 𝑘 ≥ 1. Then we re-index the sum to start
from 𝑘 = 0, and write 𝑘 + 𝑑 + 1 = (𝑑 + 2) + 𝑘 − 1. Then we use the equality (−𝑎𝑏) = (−1)𝑏(𝑎+𝑏−1𝑏), with
𝑎 = 𝑑 + 2 and 𝑏 = 𝑘. Finally, we use the binomial expansion, (1 − 𝑥)𝑛 = ∑∞

𝑘=0 (
𝑛
𝑘)𝑥

𝑘 , with 𝑛 = −(𝑑 + 2)
and 𝑥 = −1/2.

Recall, 𝑒0(𝑧) and 𝑒1(𝑧) were defined as

𝑒0(𝑧)
def= 1 − e−𝜅𝑧 , and (205a)

𝑒1(𝑧)
def=
√
e−𝜅𝑧(2 − e−𝜅𝑧) =

√
2e−𝜅𝑧/2

√
1 − e−𝜅𝑧/2 . (205b)

Since the Kraus operators𝐸0 and𝐸1 are defined in terms of the expressions given in Lemma 12.18 and Lemma 12.20,
we can combine these two lemmas to show that the two Kraus operators 𝐸0 and 𝐸1 also do not increase
the number of odd entries by too much, and we then have the following lemma.

Lemma 12.21 (Single query preserves quasi-evenness). For all 𝑜, 𝑅 ≤ 𝓁1/10/2, 1 ≤ 𝑑 ≤ 𝑅, and operators 𝐴
with ‖𝐴‖op ≤ 1 acting on A, the following inequality holds.

‖‖‖‖‖
QE≥𝑜+𝑑 (

∑
𝑦
𝐴 ⋅ |𝑦⟩⟨𝑦| ⊗

(
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)))
QE𝑜

‖‖‖‖‖op
≤ (

214𝑅5𝑑√
𝓁)

𝑑/4

. (206)

Here, we have omitted idA on the projectors QE𝑜 and QE≥𝑜+𝑑 .

78

Proof. We expand out the operator norm as follows.

‖‖‖‖‖
QE≥𝑜+𝑑 (

∑
𝑦
𝐴 ⋅ |𝑦⟩⟨𝑦| ⊗

(
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)))
QE𝑜

‖‖‖‖‖op
(207a)

=
‖‖‖‖‖
∑
𝑦
𝐴 ⋅ |𝑦⟩⟨𝑦| ⊗ QE≥𝑜+𝑑 (

𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅)

+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅))

QE𝑜

‖‖‖‖‖op
(207b)

≤
‖‖‖‖‖
∑
𝑦

|𝑦⟩⟨𝑦| ⊗ QE≥𝑜+𝑑 (
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅))
QE𝑜

‖‖‖‖‖op
(207c)

≤ max
𝑦

‖‖‖‖‖
QE≥𝑜+𝑑 (

𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅)

+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅))

QE𝑜

‖‖‖‖‖op
(207d)

≤ max𝑦
‖‖‖QE≥𝑜+𝑑 (𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅))QE𝑜
‖‖‖op

+max𝑦
‖‖‖QE≥𝑜+𝑑 (𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃

2
𝑦 ⋅ Con𝑅))QE𝑜

‖‖‖op
(207e)

≤ max
𝑦

‖‖‖QE≥𝑜+𝑑 ⋅ (𝑒1(Con𝑅 ⋅ 𝐆̃
2
𝑦 ⋅ Con𝑅)) ⋅ QE𝑜

‖‖‖op
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(𝐴)

+max
𝑦

‖‖‖QE≥𝑜+𝑑 ⋅ (𝑒0(Con𝑅 ⋅ 𝐆̃
2
𝑦 ⋅ Con𝑅)) ⋅ QE𝑜

‖‖‖op
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(𝐵)

.
(207f)

Here, we first use the fact that QE≥𝑜+𝑑 acts only on the purifying register, then use the fact that ‖𝐴‖op ≤ 1.
Then we use the fact that for any operator that is block-diagonal, the operator norm is the max of the
operator norms restricted to each block. Finally, we apply the triangle inequality. Now we bound parts
(𝐴) and (𝐵) separately using Lemma 12.18 and Lemma 12.20. We have the following

(𝐴) = max
𝑦

√
2
‖‖‖‖‖
QE≥𝑜+𝑑 ⋅ (

e−(𝜅/2)⋅(Con𝑅 ⋅𝐆̃
2
𝑦 ⋅Con𝑅))

√
1 −

1
2
e−𝜅(Con𝑅 ⋅𝐆̃2

𝑦 ⋅Con𝑅)
)

⋅ QE𝑜
‖‖‖‖‖op

(208a)

≤
√
2(𝑑 + 1)(

64𝑅5√
𝓁)

𝑑/4

. (208b)

Here, for every 𝑦, we use Lemma 12.19 with 𝜆 = 𝑑 − 1, the same projectors Π1 = QE𝑜 ⪯ …Π𝑑−1 =

QE𝑜+𝑑 , and the 2 operators 𝐴2 = e−(𝜅/2)(Con𝑅 ⋅𝐆̃
2
𝑦 ⋅Con𝑅) and 𝐴1 =

√
1 − 1

2e
−𝜅(Con𝑅 ⋅𝐆̃2

𝑦 ⋅Con𝑅). Lemma 12.18 and
Lemma 12.20 bound each ‖(id − Π𝑑−1)𝐴𝑖Π𝑜‖op ≤ (64𝑅5/

√
𝓁)𝑑/4, completing the bound.

Similarly, we bound (𝐵) as follows.

(𝐵) ≤ max
𝑦

‖‖‖QE≥𝑜+𝑑 ⋅ (id − e−𝜅(Con𝑅 ⋅𝐆̃
2
𝑦 ⋅Con𝑅)

) ⋅ QE𝑜
‖‖‖ (209a)

≤ (
2𝑅5√
𝓁)

𝑑/4

. (209b)

Here, we directly apply Lemma 12.18, together with the fact that QE≥𝑜+𝑑 ⋅ QE𝑜 = 0 so we can remove the

79

identity term. Putting things together, we have an upper bound on the operator norm of

(𝐴) + (𝐵) ≤ 2𝑑 (
64𝑅5√

𝓁)

𝑑/4

≤ (
214𝑅5√

𝓁)

𝑑/4

. (210)

Here, we take the upper bound 2𝑑 ≤ 2𝑑+1 in the final line.

The previous lemma applies to a standard query 𝑦. However, if the verification algorithm applies
a conditional query and in the case that the conditional query is not applied, it is clear to see that the
algorithm cannot change the quasi-evenness of the S register. Formally, we have the following.

Corollary 12.22 (Single controlled query preserves quasi-evenness). For all 𝑜, 𝑅 ≤ 𝓁1/10/2, 1 ≤ 𝑑 ≤ 𝑅,
and unitaries 𝐴 acting on A, the following inequality holds.

‖‖‖‖‖‖
QE≥𝑜+𝑑

⎛
⎜
⎜
⎝
∑
𝑦,𝑏
𝐴 ⋅ |𝑏, 𝑦⟩⟨𝑏, 𝑦| ⊗

(
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅))

𝑏 ⎞
⎟
⎟
⎠
QE𝑜

‖‖‖‖‖‖op
≤ (

214𝑅5𝑑√
𝓁)

𝑑/4

. (211)

Here, we have omitted idA on the projectors QE𝑜 and QE≥𝑜+𝑑 .

Proof. Applying the triangle inequality, we have that

‖‖‖‖‖‖
QE≥𝑜+𝑑

⎛
⎜
⎜
⎝
∑
𝑦,𝑏
𝐴 ⋅ |𝑏, 𝑦⟩⟨𝑏, 𝑦| ⊗

(
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅))

𝑏 ⎞
⎟
⎟
⎠
QE𝑜

‖‖‖‖‖‖op
(212a)

≤
‖‖‖‖‖
QE≥𝑜+𝑑 (

∑𝑦 𝐴 ⋅ |1, 𝑦⟩⟨1, 𝑦| ⊗
(

𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅)

+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2
𝑦 ⋅ Con𝑅)))

QE𝑜

‖‖‖‖‖op
+‖‖‖QE≥𝑜+𝑑 (∑𝑦 𝐴 ⋅ |0, 𝑦⟩⟨0, 𝑦| ⊗ id)QE𝑜

‖‖‖op

(212b)

≤ (
214𝑅5𝑑√

𝓁)

𝑑/4

+ 0 . (212c)

Here, we use the fact that when 𝑏 = 0, the inner unitary is the identity, and then we use the fact that
QE≥𝑜+𝑑 and QE𝑜 are projectors onto orthogonal subspaces since 𝑑 ≥ 1 and they commute past 𝐴 and
|0, 𝑦⟩⟨0, 𝑦|. When 𝑏 = 1, we use the fact that ‖𝐴 |1⟩⟨1|‖op ≤ 1 and apply Lemma 12.21.

Theorem 12.23. Let be any 𝑇 -query algorithm making queries to 𝑈 and 𝑣 ∈ ℤ≥0 be a multiple of 4. Then
there exists a constant 𝑐 such that for suitably large 𝑛, the purified state of the algorithm has squared overlap
with the complement of the (𝑐 ⋅ 𝑇 10, 𝑣/4)-low collision subspace that is lower bounded by

‖‖‖(id − QEC(𝑐⋅𝑇 20,𝑣/4)) ||𝜓PQ⟩
‖‖‖
2
≤ ((

𝑇 4

𝓁1/32)

𝑣

+ e−5𝑇)

2

. (213)

Proof. Assume without loss of generality that 𝑇 ≥ 𝑛. Then we apply Corollary 12.2 with 𝜄 = e−5𝑇 to show
that there exist integers 𝑟 = 𝑂(𝑇 10) and 𝑅 = 𝑂(𝑇 13) to get that

‖ |𝜓PQ⟩ − |𝜓𝑅,𝑟⟩‖ ≤ e−5𝑇 . (214)

80

Then, we apply Lemma 12.19 with 𝜆 = 𝑣/4, Π0 = QEC𝑟,0 ⪯ … ⪯ Π𝑣/4 = QEC𝑟,𝑣/4 and operators 𝐴𝑖 being

𝐴𝑖 =
⎛
⎜
⎜
⎝
∑
𝑦,𝑏
𝐴 ⋅ |𝑏, 𝑦⟩⟨𝑏, 𝑦| ⊗

(
𝑋U𝑦 ⊗ 𝑒1(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅)
+𝑍U𝑦 ⊗ 𝑒0(Con𝑅 ⋅ 𝐆̃2

𝑦 ⋅ Con𝑅))

𝑏 ⎞
⎟
⎟
⎠
, (215)

where 𝐴 here is the unitary that the verification algorithm applies, and we note that there are 𝑇 ≤ 𝓁1/10/2
of them. We also use the fact that the initial state is contained in QE0. Then Corollary 12.22 gives us the

bound on the individual norms of (
64𝑅5(𝑣/4)√

𝓁)
(𝑣/4+1)/4

. Resolving Lemma 12.19, we have

‖‖‖(id − QEC(𝑟,𝑣/4)) ⋅ |𝜓𝑅,𝑟⟩
‖‖‖ ≤ (

𝑇 + 𝑣/4
𝑇 − 1)(

214𝑅5√
𝓁)

(𝑣/4+1)/4

(216a)

≤ (2𝑇)𝑣/4(
214𝑅5√

𝓁)

𝑣/16

(216b)

≤ (
218𝑅5𝑇 4

√
𝓁)

𝑣/16

. (216c)

Combining these two equations using the triangle inequality, we have that

‖‖‖(id − QEC(𝑟,𝑣/4)) ⋅ |𝜓PQ⟩
‖‖‖ ≤ (

218𝑅5𝑇 4
√
𝓁)

𝑣/16

+ e−5𝑇 (217a)

≤ (
4𝑅5/16𝑇 1/4

𝓁1/32)

𝑣

+ 𝑒−5𝑇 . (217b)

Substituting 𝑅 = 𝑐 ⋅ 𝑇 13 and 𝑟 = 𝑐 ⋅ 𝑇 10 for some constant 𝑐 (for suitably large 𝑛), for sufficiently large 𝑇 ,
we have that 4𝑅5/16𝑇 1/4 ≤ 𝑇 4 which completes the theorem.

Proving themain sampling upper bound Combining the gentle measurement lemma, Theorem 12.23,
and Theorem 10.2, which bounds the probability of sampling 𝑣 many points given that the state is in
QEC(𝑐⋅𝑇 10,𝑣/4) (with 𝑇 = 𝑣𝑡 being the number of queries), we achieve the main result of Part III: Theorem 9.1:

Proof of Theorem 9.1. Let |𝜓PQ⟩ be the state of the algorithm after making 𝑣𝑡 queries to 𝑈 , then we have,
for Πsucc being the success operator from eq. (56).

‖‖‖Πsucc ||𝜓PQ⟩
‖‖‖
2
≤ ‖‖‖Πsucc ⋅ QEC(𝑐⋅𝑣10𝑡10,𝑣/4) ⋅ ||𝜓PQ⟩

‖‖‖
2
+ ‖‖‖Πsucc ⋅ (id − QEC(𝑐⋅𝑣10𝑡10,𝑣/4)) ||𝜓PQ⟩

‖‖‖
2

(218a)

≤ 2(
4𝑣((𝑣𝑡)30 + 𝑣(𝑣𝑡)20)

√
𝓁

2𝑛/4)

𝑣

+ ((
(𝑣𝑡)4

𝓁1/32)

𝑣

+ 𝑒−5𝑣𝑡)

2

. (218b)

Here, we apply the triangle inequality and bound the second term using Theorem 12.23, and the first term
using Theorem 10.2 with 𝑇 = 𝑣𝑡.

81

Part IV

Theorem statements and concluding remarks
13 Property-testing and oracle separations

We can now combine both our sampler success probability upper bound with the lower bound on the
success probability implied by aQCMA algorithm to get a lower bound on the witness length of a successful
QCMA algorithm.

Theorem 13.1. For all constants 𝑎 > 0 and functions 𝑡(𝑛), 𝑞(𝑛) that satisfy 𝑡(𝑛) ≤ 𝑎𝑛𝑎, 𝑞(𝑛) ≤ 𝑎𝑛𝑎 for all
𝑛 ≥ 𝑛0. Let 𝑛0 be the smallest integer such that for all 𝑛 ≥ 𝑛0, both Theorem 6.2 and Theorem 9.1 apply using
for 𝑡 = 𝑡(𝑛), 𝑞 = 𝑞(𝑛), and 𝑣 = 1000𝑞. Then for any 𝑛 ≥ 𝑛0, and a binary-output quantum query algorithm
with classical witness of length 𝑞(𝑛) and making 𝑡(𝑛) queries to the oracles (𝑆, 𝑈) of size 𝑛, there exists a pair
of oracle (𝑆∗, 𝑈 ∗) of size 𝑛 such that

1. either (𝑆∗, 𝑈 ∗) are at least 59
100 -spectrally Forrelated, but for all witnesses 𝑤 of length 𝑞(𝑛),

ℙ[(𝑆∗,𝑈 ∗)(𝑤) = 1] <
2
3
. (219)

2. or (𝑆∗, 𝑈 ∗) are at most 57
100 -spectrally Forrelated, but there exists a witness 𝑤 of length 𝑞(𝑛) such that

ℙ[(𝑆∗,𝑈 ∗)(𝑤) = 1] >
1
3
. (220)

Proof. If the stated consequence was false, then the algorithm  properly classifies all spectral Forrelation
problems promised that either the instance is at least 59/100- or at most 57/100-spectrally Forrelated of
size 𝑛. However, setting 𝓁 = 2𝑛/10 and 𝑣 = 1000𝑞, then we can apply Theorem 6.2 and Lemma 7.3 with
𝜅 = 1/10 and 𝜌 = 2𝓁2

2𝑛 ln (2𝑛
2𝓁4), yielding a sampler that outputs 𝑣 points with probability 𝑂(𝑡−1000𝑞) when

(𝑆, 𝑈) is sampled from the distribution Strong. Applying Theorem 9.1 yields a sampling probability upper
bound of 𝑂 ((poly(𝑛)2−𝑛/160)1000𝑞), whenever 𝑡 and 𝑞 are ≤ 𝑎𝑛𝑎, for the distribution Strong. For suitably
large 𝑛, (poly(𝑛)2−𝑛/160)1000𝑞 ≪ 𝑡−1000𝑞 , concluding the proof by contradiction.

We have shown in Theorem 13.1 that for every sufficiently large instance size 𝑛, there exists a property
testing problem about size 𝑛 oracles such that there exists an 𝑛-qubit quantum witness for the problem
verifiable by an efficient quantum algorithm. Still, there does not exist any 𝑡 = 𝑡(𝑛) time quantum algo-
rithm accepting 𝑞 = 𝑞(𝑛)-length classical witnesses for the problem, where both 𝑡 and 𝑞 are polynomial
in 𝑛. This is technically not yet an oracle separation between QCMA and QMA.

The oracle separation language Let 𝑆, 𝑈 ∶ {0, 1}∗ → {0, 1} be oracles and let 𝑆𝑛, 𝑈𝑛 be the restriction
to 𝑛-bit inputs. We define the unary language 𝑆,𝑈 as follows:

1𝑛 ∈ 𝑆,𝑈 ⟺ 𝑆𝑛, 𝑈𝑛 ∶ {0, 1}𝑛 → {0, 1} are ≥
59
100

-spectrally Forrelated, (221a)

82

1𝑛 ∉ 𝑆,𝑈 ⟺ 𝑆𝑛, 𝑈𝑛 ∶ {0, 1}𝑛 → {0, 1} are ≤
57
100

-spectrally Forrelated, (221b)

and, all other strings ∈ {0, 1}∗ are ∉ 𝑆,𝑈 . (221c)

This language will be what we use to prove Theorem 1.1. We note that 1𝑛 being in the language is deter-
mined by the oracle of size 𝑛+1 bits, as the pair of oracles (𝑆𝑛, 𝑈𝑛) is an 𝑛+1 bit oracle. Roughly speaking,
we will choose the oracles 𝑆, 𝑈 such that the 𝑘-th polynomial-time uniform quantum query algorithm
in an enumeration of quantum query algorithms will incorrectly identify membership of 1𝑛𝑘 in  of an
appropriately chosen integer 𝑛𝑘 .

As one might suspect, we will use Theorem 13.1 to diagonalize against all polynomial-sized classi-
cal witness oracle algorithms. The challenge is that the algorithms can query the oracle at any length—
intuitively, on input 1𝑛, querying at lengths ≠ 𝑛 will not help the algorithm. However, formalizing this
intuition is tedious. We do this in the following proof by identifying a family of appropriately chosen inte-
gers 𝑛1 < 𝑛2 < … such that the algorithm on input of length 𝑛𝑘 will not query at lengths ≥ 𝑛𝑘+1. This will
be enough to inductively select the definition of the oracle at size 𝑛𝑘 (based on the choices of the oracle at
all sizes < 𝑛𝑘) to complete the diagonalization.

Proof of Theorem 1.1. For any choice of oracles 𝑆, 𝑈 such that each restriction to size 𝑛 inputs encodes ei-
ther a ≥ 59/100 or ≤ 57/100 instance of spectral Forrelation, the containment of 𝑆,𝑈 in QMA𝑆,𝑈 follows
from Theorem 5.10. Now we prove the lower bound for QCMA algorithms.

Let𝑀1, 𝑀2, … be an enumeration of all possible Turing machines. Second, identify any surjective func-
tion 𝜄 ∶ ℕ ↠ ℕ2 and define functions 𝑗 , 𝑎 ∶ ℕ → ℕ by (𝑗(𝑘), 𝑎(𝑘)) = 𝜄(𝑘). We will use this surjection to
diagonalize against all possible polynomial-time quantum algorithms to prove a QCMA-lower bound.

Third, define a function 𝐹 ∶ ℕ → ℕ by 𝐹(𝑎) is the minimum value such that for all 𝑛 ≥ 𝐹(𝑎), any
𝑡(𝑛) = 𝑎𝑛𝑎 query algorithm with 𝑞(𝑛) = 𝑎𝑛𝑎 length classical witness must misclassify some pair (𝑆, 𝑈) of
size 𝑛. By Theorem 13.1, for every integer 𝑎, 𝐹(𝑎) is well-defined. In other words, 𝐹(𝑎) is the first integer 𝑛
for which we can guarantee that an 𝑎𝑛𝑎 query and 𝑎𝑛𝑎 witness restricted algorithm must misclassify some
pair (𝑆, 𝑈) of size 𝑛.

Fourth, we identify integers 𝑛1, 𝑛2, … where the oracles will be defined to be non-zero. Define

𝑛1
def= 1 + 𝐹(𝑎(1)), (222a)

∀ 𝑘 > 1, 𝑛𝑘
def= 1 + max

{
𝐹(𝑎(𝑘)), 𝑎(𝑘 − 1)(𝑛𝑘−1)𝑎(𝑘−1)

}
. (222b)

We now define the oracles 𝑆, 𝑈 by defining the oracles at each length. For any 𝑛 ∈ ℕ ⧵ {𝑛1, 𝑛2, …}, let both
oracles 𝑆𝑛 and 𝑈𝑛 equal 0 everywhere. Then the spectral-Forrelation problem defined by the 𝑛-th pair of
oracles is trivially a no instance for 𝑛 ∈ ℕ ⧵ {𝑛1, 𝑛2, …}. We now go through and define the oracles at sizes
remaining sizes: 𝑛1, 𝑛2, … ,.

83

For each 𝑘 = 1, 2, 3, …, run Turing machine𝑀𝑗(𝑘) on input 1𝑛𝑘 for 𝑎(𝑘)𝑛𝑎(𝑘)𝑘 steps and interpret its output
as a quantum query circuit 𝑛𝑘 which takes as input a classical witness. By adding the halting conditions
to the Turing machine, we have implicitly enforced that the witness length and total number of gates (ele-
mentary or oracle) are at most 𝑎(𝑘)𝑛𝑎(𝑘)𝑘 . Furthermore, by construction, the largest input queryable by this
algorithm is size 𝑎(𝑘)𝑛𝑎(𝑘)𝑘 . This is a standard diagonalization trick to ensure that every polynomial-time
and polynomial-query algorithm is considered and that no super-polynomial parameterized algorithms
are accidentally considered.

Next, we take this algorithm 𝑛𝑘 and we build from it a query algorithm 𝑛𝑘 that only queries oracles
of input length 𝑛𝑘 . To construct 𝑛𝑘 , take the algorithm 𝑛𝑘 which can make oracle queries of varying
sizes and for every query it makes of length < 𝑛𝑘 , use the previously generated definitions of the oracles
𝑆, 𝑈 and hardcode these answers. This is well defined as we are defining the oracles 𝑆, 𝑈 for progressively
larger input sizes. For queries it makes of length > 𝑛𝑘 , replace the oracle gates with identity circuits. The
resulting circuit will be 𝑛𝑘 , which only makes queries of length = 𝑛𝑘 . This new algorithm 𝑛𝑘 can be
used to derive a pair (𝑆𝑛𝑘 , 𝑈𝑛𝑘) by applying Theorem 13.1 on 𝑛𝑘 to generate the pair (𝑆𝑛𝑘 , 𝑈𝑛𝑘).

This completes the construction of the oracles 𝑆, 𝑈 everywhere. It remains to prove that no QCMA𝑆,𝑈

algorithm exists. Assume, for contradiction, there exists a P-uniform family of quantum oracle algorithms
{𝑛} that solve spectral Forrelation for a witness of length 𝑞(𝑛) = poly(𝑛) with 𝑡(𝑛) = poly(𝑛) queries.
Then, the family appears in the Turing machine enumeration as some 𝑀𝑗⋆ and there exists some 𝑎⋆ such
that 𝑡(𝑛), 𝑞(𝑛) ≤ 𝑎⋆𝑛𝑎⋆ . As 𝜄 is a surjection, there exists a 𝑘⋆ such that 𝜄(𝑘⋆) = (𝑗⋆, 𝑎⋆). We now prove that
this algorithm will misclassify the string 1𝑛𝑘⋆ , thereby proving that it does not solve spectral Forrelation.

To prove this, let 𝑛𝑘⋆ be the quantum circuit for inputs of length 𝑛𝑘⋆ . Observe that since the oracles
are defined as = 0 for inputs ∉ {𝑛1, 𝑛2, …}, and the fact that 𝑛𝑘⋆+1 > 𝑎⋆𝑛𝑎

⋆

𝑘⋆ (by construction), each query
gate for inputs of length > 𝑛𝑘⋆ is effectively an identity gate as it only makes queries on inputs of length
at most 𝑎⋆𝑛𝑎⋆𝑘⋆ . Therefore, by hardcoding the behavior on input sizes < 𝑛𝑘⋆ , the query algorithm 𝑛𝑘⋆
(previously defined) has the exact same output as 𝑛𝑘⋆ on inputs of size 𝑛𝑘⋆ . However, using Theorem 13.1,
we specifically constructed a pair (𝑆𝑛𝑘 , 𝑈𝑛𝑘) that 𝑛𝑘⋆ will misclassify. Therefore, the family {𝑛} will
answer incorrectly on input 1𝑛𝑘⋆ , completing the proof.

14 Concluding remarks

Having concluded the proof, we take a moment to reflect on the path that led us here. In particular,
we discuss the role of the bosonic purification of the oracle, its conceptual advantages, and the technical
challenges that arose in this formulation.

Zhandry’s observation. Zhandry’s observation [Zha25] concerned the use-once nature of quantum wit-
nesses versus the reusability of classical witnesses. This distinction allowed him to construct a sampler

84

that, given oracle access to 𝑆, could produce multiple distinct samples from 𝑆, contingent on a technical
conjecture.

The sampler perspective was appealing, as it delineated the boundary between what a classical witness
can explicitly list about 𝑆 and what additional structure must be inferred by the verifier through oracle
queries. However, the argument hinged on a conjecture asserting that queries to the unitary oracle 𝑈 were
computationally indistinguishable from random—a conjecture which ultimately fails. While Zhandry’s
setting involved the quantum Fourier transform and ours employs a related but distinct Fourier-analytic
framework, the key issue was the same: queries to 𝑈 are not random, and an algorithm could detect that
they are far from uniformly random. The saving observation is that their behavior is amenable to precise
analysis through Fourier and, ultimately, bosonic tools. This is made precise by our analysis in the bosonic
framework, which exactly characterizes the action of queries to 𝑈 . Our proof can circumvent Zhandry’s
issue as it proves a sampling probability upper bound based on the bosonic characterization. In some sense,
our proof suggests that the QMA vs. QCMA separation problem is not as related to pseudorandomness as
prior results [LMY25, Zha25] have suggested.

Recognizing this failure was serendipitous. It led us to the insight that one could instead adapt the
sampler proof to operate solely through access to 𝑈 , while still producing valid samples from 𝑆. This
realization shifted our focus entirely to understanding the detailed structure of oracle queries in the 𝑈 -
picture.

Strong sampling upper bounds Recall that the sampling probability lower bound we derive is incred-
ibly small. Its scaling is roughly 2−𝑞 ⋅ Ω(𝑡)−2𝑣 for 𝑞, the length of the witness, 𝑡 the number of queries,
and 𝑣 the number of samples produced. However, as long as 𝑡 is polynomial, this bound is only quasi-
exponentially small. Therefore, a contradicting upper bound should be even smaller in order to contradict
the existence of a QCMA algorithm in all polynomial parameter regimes. This stringent requirement means
that it does not suffice to approximate the behavior of the state after each query or guess. In particular,
what’s important to study is the post-selected state of the first guesses 𝑧1, … , 𝑧𝑘 being correct. Each post-
selection is conditioned on an event of exponentially small probability, and therefore, the post-selection
state will be very far from the original state.

In particular, we spent considerable time chasing the idea that the post-measurement state after the
first 𝑘 guesses have been verified as correct will almost certainly be supported on Fock states with total
momentum 0. Total momentum 0, by Noether’s theorem, implies that any position guess will only succeed
with negligible probability. While one can show using the 𝐇̃𝑦 formalism that the first guess will be on a
total momentum 0 state, for future states this can only be guaranteed up to negligible additive error; the
issue is that this error compounds, leading to a trivial probability upper bound. This issue forced us to
construct a sampling upper bound technique that constructed a probability upper bound for all 𝑣 samples
at once using the quasi-even condensate structure.

Thebosonic perspective. Once we accepted that the heart of the matter was to analyze queries to𝑈 , we
turned to a wide array of standard quantum query techniques—compressed oracles, polynomial methods,
adversary arguments—only to find each approach mired in technical complexity. The crux of the difficulty
was purification: expressing 𝑆 and 𝑈 as parts of a single coherent quantum system.

85

In compressed oracle techniques, one would ideally purify 𝑆 via independent amplitudes, e.g., sampling
each element’s inclusion in 𝑆 with probability 𝓁/2𝑛. Yet this fails spectacularly for our setting, since each
evaluation of 𝑈 depends non-locally on all elements of 𝑆. The natural purification (cos 𝜃 |0⟩ + sin 𝜃 |1⟩)⊗2𝑛

for sin2 𝜃 ≈ 𝓁/2𝑛 simply cannot encode this dependency. We needed a new formalism.
After much frustration with indices and combinatorial cases (often arising from identical versus dis-

tinct indices in sums), we found relief in the bosonic perspective. The key insight was to treat the oracle’s
purification as a system of indistinguishable bosons whose spatial locations encode membership in 𝑆. This
eliminated the combinatorial clutter of index management and replaced it with clean algebraic manipula-
tions via creation and annihilation operators.

Within this framework, we were able to reinterpret and re-derive earlier results—such as those of
Hamoudi and Magniez [HM23]—in the language of bosons, gaining both conceptual clarity and technical
leverage. Moreover, the physical picture aligned beautifully with the intended semantics of the quantum
witness: the prover’s ideal witness is |𝑆⟩, the uniform superposition over elements of 𝑆. In the bosonic
purification, 𝑆 directly corresponds to the positions of the bosons, so the verifier’s measurement effectively
“grabs, in superposition,” a uniformly random boson and records its position. This unifies the intuition
that a quantum witness can represent the entire set 𝑆 at once, while a classical witness must enumerate
its elements.

Challenges within the bosonic formulation. Despite its elegance, the bosonic formalism introduced
its own difficulties. Our initial hope was that the oracle queries would assume a particularly simple and
structured form in the momentum basis. Early calculations suggested that queries to 𝑈 could be ex-
pressed via the double momentum hopping operator 𝐇̃𝑦 , which preserves total momentum. By analogy
with Noether’s theorem [Noe18], we could then argue that since the total momentum remains conserved
(and initially zero), the success probability of the first “guess” at a boson’s position should equal 𝓁/2𝑛. This
was encouraging—it suggested an inductive argument might succeed.

However, post-selection proved fatal to this line of reasoning. Conditioning on a successful guess
perturbs the total momentum, breaking the conservation structure and rendering straightforward induc-
tion impossible. We therefore needed a more delicate understanding of how the oracle queries affect the
system’s momentum distribution.

A central obstacle was the definition of 𝑈 itself: each element 𝑦 must be included with probability pro-
portional to 𝛾 (𝑆)𝑦 , the squared Hadamard amplitude of |𝑆⟩. A first question that needed resolving was why
𝛾 (𝑆)𝑦 was the correct parameter to use for sampling 𝑈 . In particular, as previously noted, using the “raw”
Hadamard amplitudes of |𝑆⟩ leaks the sign information in the Fourier basis, which is the crucial informa-
tion for approximately synthesizing |𝑆⟩ in the Fourier basis. We suspect that our choice of 𝛾 (𝑆)𝑦 isn’t unique,
but we do not have a second example. 𝛾 (𝑆)𝑦 gave us enough trouble as it is. While 𝛾 (𝑆)𝑦 behaves roughly like
the square of a Gaussian random variable, its unbounded support complicates any attempt to interpret it
as a probability in [0, 1]. We explored several approaches—thresholding, randomized truncations, and fully
quantum purifications—but most were unsatisfactory. Truncating isn’t smooth, which yields difficulties in
analysis, as we only knew of techniques for handling polynomials in the hopping operators. Another op-
tion is conditioning the distribution Strong on the 𝛾 (𝑆)𝑦 being bounded by say 𝑛100. Chernoff bounds argue
that this event occurs with probability only exponentially small. Unfortunately, conditioning the distribu-

86

tion on this event changes the initial state from a state of 𝓁 bosons in 0-momentum to a state exponentially
close in additive error. However, as previously discussed, additive approximations are not strong enough
to prove exponentially small probability upper bounds as the errors compound.

Ultimately, we adopted an exponential function, guided by the “flat-tail” polynomial approximations
introduced by Narayanan [Nar24]. This choice was technically crucial, as it allowed us to approximate the
exponential behavior using low-degree polynomials in the double momentum hopping operators. With
this analytic machinery in hand, we could begin to generalize beyond the specific oracle construction. Stan-
dard intuition from quantum uncertainty principles suggests that any state supported on a few momentum
modes should yield a sampling upper bound. Yet, since the algorithm can query all 𝑦 simultaneously, this
intuition breaks down. The key insight was that the double momentum hopping operator typically acts by
moving a pair of bosons, especially when starting from a condensate. A useful way to reinterpret this phe-
nomenon is through momentum conservation. Each oracle query preserves total momentum, which—by
analogy to translational invariance in many-body systems—acts as a global symmetry constraining how
amplitude can flow between momentum modes. In the initial condensate, the total momentum is zero, and
so any admissible process must preserve this invariance. This observation already implies a tight bound
on the probability of sampling a single correct element from 𝑆, as any non-zero-momentum component
must arise from a compensating momentum elsewhere in the system. Extending this reasoning to many
guesses required recognizing that the double-hopping operator effectively creates and annihilates pairs
of equal-and-opposite momenta—“Cooper-like” pairs in condensed-matter language—so that quasi-even
condensates retain their global symmetry across queries. In this case, since the Fourier transform is con-
sidered, a “Cooper-like” pair is a pair of bosons in the same mode. It is precisely this paired structure,
rather than a literal recording of queries in 𝑈 , that allowed us to control the growth of odd momentum
modes and prove the quasi-even property.

Finally, establishing that the quasi-even condensate property persists after a polynomial number of
queries required substantial new machinery. Our bounds are almost certainly suboptimal, but they suffice
to complete the proof. To our knowledge, this represents one of the first quantum query lower bounds
addressing an oracle with as much internal quantum structure as 𝑈 . Consequently, the classical tools of
quantum query complexity—those tailored to unstructured oracles such as Grover’s search or collision-
finding—were insufficient, necessitating the new bosonic framework developed here.

15 Acknowledgments

We thank James Bartusek, Andrea Coladangelo, Uma Girish, Jonas Helsen, William Kretschmer, Anand
Natarajan, Barak Nehoran, Fermi Ma, Er-cheng Tang, Umesh Vazirani, and Henry Yuen for helpful discus-
sions. We additionally thank Fermi Ma for suggesting comments on an early draft of the result that greatly
improved the presentation. We thank Nicholas Kocurek and Joe Slote for assistance in creating figures.

JB is supported by Henry Yuen’s AFORS award FA9550-21-1-036 and NSF CAREER award CCF2144219.
JH acknowledges funding from the Harvard Quantum Initiative postdoctoral fellowship. This work was
partially completed while all authors were participants in the Simons Institute for the Theory of Comput-
ing Summer Clustering on Quantum Computing.

87

References

[AA09] Scott Aaronson and Andris Ambainis. The need for structure in quantum speedups. arXiv
preprint arXiv:0911.0996, 2009.

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quan-
tum from classical computing. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 307–316, 2015.

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 141–150, 2010.

[Aar21] Scott Aaronson. Open problems related to quantum query complexity. ACM Transactions on
Quantum Computing, 2(4):1–9, 2021.

[ABN23] Anurag Anshu, Nikolas P. Breuckmann, and Chinmay Nirkhe. NLTS hamiltonians from good
quantum codes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, page 1090–1096, New York, NY, USA, 2023. Association for Computing Machinery.

[AC13] Scott Aaronson and Paul Christiano. Quantum Money from Hidden Subspaces. Theory of
Computing, 9(9):349–401, 2013.

[AGL25] Prabhanjan Ananth, Aditya Gulati, and Yao-Ting Lin. On the Limitations of Pseudorandom
Unitaries. Cryptology ePrint Archive, Paper 2025/1785, 2025.

[AK07] Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Twenty-
Second Annual IEEE Conference on Computational Complexity (CCC’07), pages 115–128. IEEE,
2007.

[AK25] Avantika Agarwal and Srijita Kundu. A Cautionary Note on Quantum Oracles, 2025.

[AKKT20] Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler. Quantum Lower
Bounds for Approximate Counting via Laurent Polynomials. In Shubhangi Saraf, editor, 35th
Computational Complexity Conference (CCC 2020), volume 169 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 7:1–7:47, Dagstuhl, Germany, 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Amb02] Andris Ambainis. Quantum Lower Bounds by Quantum Arguments. J. Comput. Syst. Sci.,
64(4):750–767, jun 2002.

[AN02] Dorit Aharonov and Tomer Naveh. Quantum NP-a survey. arXiv preprint quant-ph/0210077,
2002.

[Bar25] Mohammed Barhoush. Separating pseudorandom generators from logarithmic pseudorandom
states. Cryptology ePrint Archive, Paper 2025/1994, 2025.

88

[BB14] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science, 560:7–11, 2014. Theoretical Aspects of Quantum
Cryptography – celebrating 30 years of BB84.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and
Weaknesses of Quantum Computing. SIAM J. Comput., 26(5):1510–1523, 1997.

[BCN25] John Bostanci, Boyang Chen, and Barak Nehoran. Oracle Separation Between Quantum Com-
mitments and Quantum One-wayness. In Eurocrypt 2025, 2025.

[BDK24] Shalev Ben-David and Srijita Kundu. Oracle separation of QMA and QCMA with bounded
adaptivity. arXiv preprint arXiv:2402.00298, 2024.

[BLMT24] Ainesh Bakshi, Allen Liu, Ankur Moitra, and Ewin Tang. Learning quantum Hamiltonians at
any temperature in polynomial time. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, pages 1470–1477, 2024.

[BMM+25] Amit Behera, Giulio Malavolta, Tomoyuki Morimae, Tamer Mour, and Takashi Yamakawa.
A New World in the Depths of Microcrypt: Separating OWSGs and Quantum Money from
QEFID. In Eurocrypt 2025, 2025.

[CCS25] Boyang Chen, Andrea Coladangelo, and Or Sattath. The power of a single Haar random state:
constructing and separating quantum pseudorandomness. In Eurocrypt 2025, 2025.

[CM16] Toby Cubitt and Ashley Montanaro. Complexity Classification of Local Hamiltonian Problems.
SIAM Journal on Computing, 45(2):268–316, 2016.

[FK15] Bill Fefferman and Shelby Kimmel. Quantum vs classical proofs and subset verification. arXiv
preprint arXiv:1510.06750, 2015.

[GLLZ21] Siyao Guo, Qian Li, Qipeng Liu, and Jiapeng Zhang. Unifying presampling via concentration
bounds. In Theory of Cryptography Conference, pages 177–208. Springer, 2021.

[GLMY25] Aditya Gulati, Yao-Ting Lin, Tomoyuki Morimae, and Shogo Yamada. Black-Box Separation
Between Pseudorandom Unitaries, Pseudorandom Isometries, and Pseudorandom Function-
Like States. Cryptology ePrint Archive, Paper 2025/1864, 2025.

[GS86] S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In
Proceedings of the Eighteenth Annual ACM Symposium onTheory of Computing, STOC ’86, page
59–68, New York, NY, USA, 1986. Association for Computing Machinery.

[GZ25] Eli Goldin and Mark Zhandry. Translating Between the Common Haar Random State Model
and the Unitary Model. In CRYPTO 2025, 2025.

[Hei27] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik. Zeitschrift für Physik, 43(3):172–198, 1927.

89

[HM23] Yassine Hamoudi and Frédéric Magniez. Quantum Time–Space Tradeoff for Finding Multiple
Collision Pairs. ACM Transactions on Computation Theory, 15(1-2):1–22, 2023.

[INN+21] Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen. Quantum search-
to-decision reductions and the state synthesis problem. arXiv preprint arXiv:2111.02999, 2021.

[JKNN12] Stephen P. Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura. Achieving
perfect completeness in classical-witness quantum merlin-arthur proof systems. Quantum
Info. Comput., 12(5–6):461–471, May 2012.

[Kre21] William Kretschmer. Quantum Pseudorandomness and Classical Complexity. In Min-Hsiu
Hsieh, editor, 16th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2021), volume 197 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[Liu22] Qipeng Liu. Non-uniformity and Quantum Advice in the Random Oracle Model. Cryptology
ePrint Archive, 2022.

[LLPY23] Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa. Classical vs Quantum
Advice and Proofs under Classically-Accessible Oracle. arXiv preprint arXiv:2303.04298, 2023.

[LMY25] Jiahui Liu, Saachi Mutreja, and Henry Yuen. QMA vs QCMA and Pseudorandomness. In
Proceedings of the 57th Annual ACM Symposium on Theory of Computing, STOC ’25, page
1520–1531, New York, NY, USA, 2025. Association for Computing Machinery.

[Lut11] Andrew Lutomirski. Component mixers and a hardness result for counterfeiting quantum
money. arXiv preprint arXiv:1107.0321, 2011.

[Mah18] Urmila Mahadev. Classical Verification and Blind Delegation of Quantum Computations. PhD
thesis, EECS Department, University of California, Berkeley, Jun 2018.

[Mer90] N David Mermin. Simple unified form for the major no-hidden-variables theorems. Physical
review letters, 65(27):3373, 1990.

[MN25] Henry Ma and Anand Natarajan. Two bases suffice for QMA1-completeness, 2025.

[MW05] Chris Marriott and John Watrous. Quantum arthur–merlin games. computational complexity,
14(2):122–152, Jun 2005.

[Nar24] Shyam Narayanan. Improved algorithms for learning quantum Hamiltonians, via flat polyno-
mials. arXiv preprint arXiv:2407.04540, 2024.

[NN24] Anand Natarajan and Chinmay Nirkhe. A distribution testing oracle separation between QMA
and QCMA. Quantum, 8:1377, 2024.

[Noe18] E. Noether. Invariante Variationsprobleme. Nachrichten von der Gesellschaft derWissenschaften
zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.

90

[NZ24] Barak Nehoran and Mark Zhandry. A computational separation between quantum no-cloning
and no-telegraphing. In 15th Innovations in Theoretical Computer Science Conference (ITCS
2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.

[Per90] Asher Peres. Incompatible results of quantum measurements. Physics Letters A, 151(3-4):107–
108, 1990.

[SV+14] Sushant Sachdeva, Nisheeth K Vishnoi, et al. Faster algorithms via approximation theory.
Foundations and Trends® in Theoretical Computer Science, 9(2):125–210, 2014.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983.

[Wik25] Wikipedia. Stars and bars (combinatorics) — Wikipedia, the free encyclopedia, 2025. [Online;
accessed 16-October-2025].

[Wil17] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2 edition, 2017.

[Yao93] Andrew Chi-Chih Yao. Quantum Circuit Complexity. In 34th Annual Symposium on Founda-
tions of Computer Science, Palo Alto, California, USA, 3-5 November 1993, pages 352–361. IEEE
Computer Society, 1993.

[YZ24] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. Jour-
nal of the ACM, 71(3):1–50, 2024.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiabil-
ity. In Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II 39, pages 239–268. Springer,
2019.

[Zha25] Mark Zhandry. Toward Separating QMA from QCMA with a Classical Oracle. In Raghu Meka,
editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025), volume 325 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 95:1–95:19, Dagstuhl, Germany,
2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

91

	I Introduction
	Proof overview
	History of the QMA versus QCMA problem
	Observations and open questions
	Outline of the paper
	Preliminaries

	II From QCMA algorithms to samplers
	Constructing samplers from strong yes instances
	Strong yes instances for spectral Forrelation

	III A sampling probability upper bound
	Quantum mechanics of bosons
	Sampler upper bound statement and organization
	Sampler upper bounds for quasi-even condensates
	A compressed oracle for bosonic systems
	Polynomial-query algorithms generate quasi-even condensates

	IV Theorem statements and concluding remarks
	Property-testing and oracle separations
	Concluding remarks
	Acknowledgments

