
Efficient Quantum 
Pseudorandomness
from Hamiltonian Phase States

John Bostanci

with Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba



Quantum computation and cryptography

Quantum computers have lots of implications for cryptography.



Quantum computation and cryptography

Quantum computers have lots of implications for cryptography.

• On one hand, people are worried that they break cryptography.



Quantum computation and cryptography

Quantum computers have lots of implications for cryptography.

• On one hand, people are worried that they break cryptography.

• Recently, there has been an explosion into research on using 
quantum computers to actually do cryptography!
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Cryptography without one-way functions

One-way functions are a family of functions that can be efficiently 
evaluated, but whose inverse is computationally hard to evaluate.

They are almost universally agreed upon as the minimal 
assumption in classical cryptography.  

𝑓(𝑥) 𝑥
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Cryptography without one-way functions

One exciting discovery is that one-way functions are not 
necessary for useful cryptography, without them we might still be 
able to do:

• Bit commitments

• Pseudorandom unitaries

• Public-key cryptography with quantum public keys

How would we actually implement these without OWFs?
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Cryptography without one-way functions

Random quantum circuits?

• Probably hard to learn given samples or query access, but…

• They probably aren’t that efficient in practice.

• They are very unstructured, and we usually want structure to 
exploit when building cryptography.  
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Cryptography without one-way functions

Our motivation: Can we find a plausible assumption, that is 
probably independent of one-way functions, and implies useful 
cryptography?

Our proposal: the Hamiltonian Phase States assumption (HPS).
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Phases, 𝜃 = (𝜃1, 𝜃2, … , 𝜃7)

Hadamard

Architecture matrix,  A =

1 0 1 0 1 0 0
0 1 1 1 0 1 1
1 1 0 0 1 0 1
1 0 0 0 1 1 1
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Hamiltonian Phase States

• A random binary matrix 𝐴 ∈ ℤ2
𝑚×𝑛 (the architecture).

• A random vector 𝜃 = 𝜃1, … , 𝜃𝑚 ∈ 0, 2𝜋 𝑚 (the phases).

The Hamiltonian Phase State with architecture 𝐴 and phases 𝜃 is 
given by:

Φ𝜃
𝐴 = exp 𝑖 ෍

𝑗=1

𝑚

𝜃𝑗 ໆ 𝑍𝐴𝑗𝑘 𝐻⊗𝑛|0𝑛⟩

Think of  𝑚 ≫ log 𝑛.

𝑘 = 1

𝑛

𝑈𝜃
𝐴
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The HPS assumption

For all polynomial-time adversaries who are given copies of Φ𝜃
𝐴 , 

it is hard to…

• (Search) Output (𝐴, 𝜃) (or something close to it).

• (Decision) Distinguish them from copies of a Haar random 
state.

Even if the adversary is given access to the architecture 𝐴.



Reasons to believe the HPS assumption

We provide three reasons to believe in the HPS assumption:

• Worst-to-average case reduction.

• HPS states satisfy a t-design properties.

• Best known algorithms seem to take exponential time.
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Worst-to-average case reduction

Just because a problem has hard instances, it doesn’t mean it is 
useful for cryptography unless you can easily sample them.

For HPS, we show how to do the following:

• Re-randomizing the angles, given the architecture.

• Re-randomizing the architecture.



Worst-to-average case reduction

Two observations:

• Permuting the wires of the state permutes the rows of A.

• For any n by n matrix R, applying 𝑈𝑅 𝑥 ↦ |𝑅−1𝑥⟩ maps A to 
AR.



Worst-to-average case reduction

Two observations:

• Permuting the wires of the state permutes the rows of A.

• For any n by n matrix R, applying 𝑈𝑅 𝑥 ↦ |𝑅−1𝑥⟩ maps A to 
AR.

This means we can do (including adding ancilla):

𝐴 ↦ Π
𝐴 0
𝐵 𝐶

𝑅
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• When 𝑚 ≤ 𝑛, this is statistically indistinguishable from an 
independently sampled matrix.



Worst-to-average case reduction

• When 𝑚 ≤ 𝑛, this is statistically indistinguishable from an 
independently sampled matrix.

• When 𝑚 > 𝑛, can be shown to be close to uniformly random in 
some cases (similar to re-randomizing LPN instances).
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indistinguishable from random states, up to a few copies.
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HPS form approximate t-designs

t-designs are families of states that are statistically 
indistinguishable from random states, up to a few copies.

Φ𝜃
𝐴 ⊗𝑡

∼ Haar random 𝜓 ⊗𝑡

We show for 𝑚 = 2𝑡(2𝑛𝑡 + log(1/𝜖)) , Hamiltonian phase states 
are 𝜖-approximate t-designs.



Applications of HPS

We show that HPS implies a number of interesting primitives that 
you couldn’t get just by assuming pseudo-random states exist:

• Public-key cryptography with quantum public keys

• Pseudo-entangled states

• Pseudorandom unitaries



Public key cryptography from HPS

Coladangelo’23 showed that quantum trapdoor functions imply 
public key cryptography, so we just need to build those.
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Quantum trapdoor functions from HPS

Quantum trapdoor functions are described by the following:

• GenTrap: 1𝑛 →  td

• GenEval: td → |eval⟩

• Eval: ( eval , 𝑥)  → |𝜓𝑥⟩

• Invert: (td, |𝜓𝑥⟩)  → 𝑥’
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Quantum trapdoor functions from HPS

Quantum trapdoor functions should satisfy:

• (Hard to invert) Without the trapdoor, it’s hard to find x from 
𝜓𝑥, given arbitrary copies of the quantum evaluation state, for a 
random x. 

• (Correctness) With the trapdoor, Invert should always output 
the original x. 



Quantum trapdoor functions from HPS

GenTrap(1𝑛): Sample a HPS instance →  (𝜃, 𝐴).



Quantum trapdoor functions from HPS

GenEval 𝜃, 𝐴 → |Φ𝜃
𝐴⟩.



Quantum trapdoor functions from HPS

Eval(|Φ𝜃
𝐴⟩, 𝑥) → 𝜓𝑥 = 𝑍𝑥1 ⊗ ⋯ ⊗ 𝑍𝑥𝑛|Φ𝜃

𝐴⟩.



Quantum trapdoor functions from HPS

Invert( 𝜃, 𝐴 , |𝜓𝑥⟩): Apply 𝐻⊗𝑛 𝑈𝜃
𝐴 −1

 and measure in the 

computational basis.



Quantum trapdoor functions from HPS

Hard to invert: Without the phases, the state looks like
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Quantum trapdoor functions from HPS

Hard to invert: Without the phases, the state looks like

𝑍𝑥|Φ𝜃
𝐴⟩, Φ𝜃

𝐴 ⊗𝑡
) ~ (𝑍𝑥|𝜙⟩, 𝜙 ⊗𝑡) from the HPS assumption,

                                   ~(|𝜓⟩, 𝜙 ⊗𝑡) for two Haar random 
states.



Quantum trapdoor functions from HPS

Correctness: 

• 𝑈𝜃
𝐴 commutes with 𝑍𝑥

• Applying their inverse removes the HPS diagonal matrix, and 
leaves the message written in the Hadamard basis.
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Open questions

Can we build more interesting cryptography from HPS? 

• In particular, can we build something that isn’t in “microcrypt”?

Is the HPS assumption warranted?

• People should try cryptanalysis of HPS, and see if the 
assumption survives scrutiny!

Can we implement HPS in the real world?

• We believe our constructions should be much more efficient 
than constructions of quantum crypto from classical 
assumptions, can quantum computers today implement them?



Thanks for listening!
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