

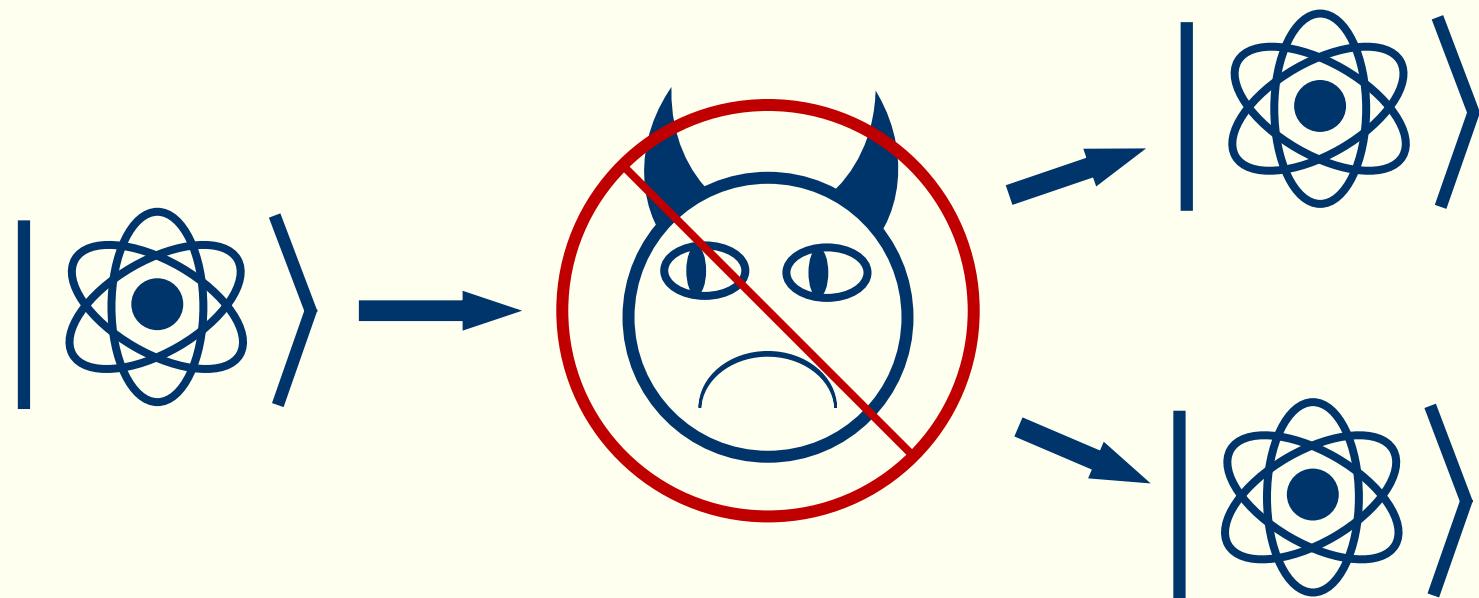
# Quantum Lightning from Non-Abelian Group Actions

John Bostancı

Based on joint work with Barak Nehoran and Mark Zhandry

# No-cloning

No cloning says no one can clone an **arbitrary** quantum state.



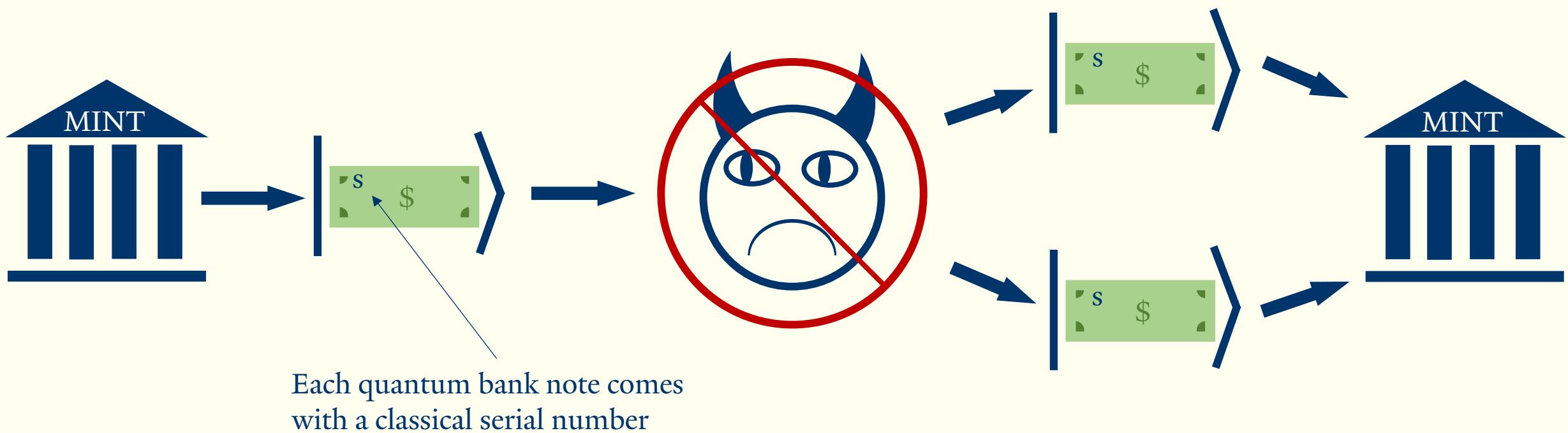
# From no-cloning to quantum money

Weisner (in 1970) used this idea to find states that could be efficiently minted, but could not be cloned by any adversary.



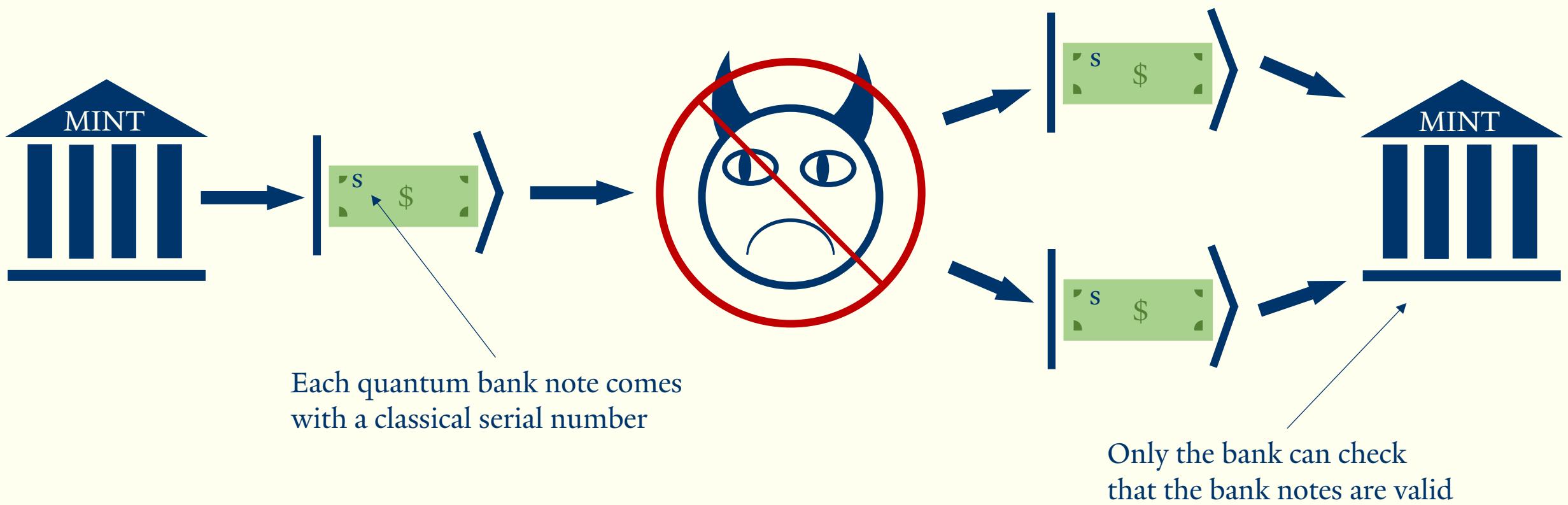
# From no-cloning to quantum money

Weisner (in 1970) used this idea to find states that could be efficiently minted, but could not be cloned by any adversary.



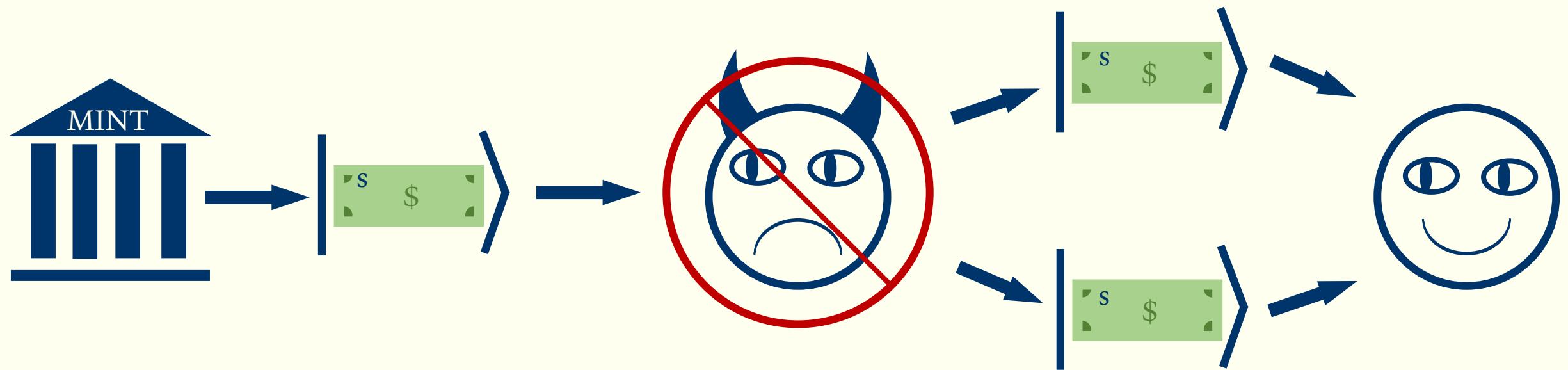
# From no-cloning to quantum money

Weisner (in 1970) used this idea to find states that could be efficiently minted, but could not be cloned by any adversary.



# Public-key quantum money

Aaronson (2009) proposed quantum money that anyone can verify.



# Public-key quantum lightning

Zhandry (2019) proposed a variant of quantum money that is “collision resistant”.



Not even the mint can make two notes  
that have the same serial number!

# Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or completely broken

Security in an idealized model

Security from a well-studied assumption

Aaronson'09 (Random stabilizer states)

Aaronson'09 (Relative to a quantum oracle)

[Zhandry'19]: Post-quantum iO

[Farhi-Gosset-Hassidim-Lutomirski -Shor'10]: knots

[Aaronson-Christiano'12]: classical hidden subspaces oracle

[Aaronson-Christiano'12]: polynomials hiding subspaces

[Kane'18, Kane-Sharif-Silverberg'21]: Commuting unitaries

[Zhandry'19]: quadratic systems of equations

[Liu-Montgomery-Zhandry'23]: Walkable invariants

[Kane'18, Kane-Sharif-Silverberg'21]: quaternion algebras

[Zhandry'23]: Abelian group actions

[Khesin-Lu-Shor'22]: lattices

# Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or completely broken

Security in an idealized model

Security from a well-studied assumption

Aaronson'09 (Random stabilizer states)

Aaronson'09 (Relative to a quantum oracle)

[Zhandry'19]: Post-quantum iO

[Farhi-Gosset-Hassidim-Lutomirski -Shor'10]: knots

[Aaronson-Christiano'12]: classical hidden subspaces oracle

Basically, the most power cryptography you could imagine, we don't know how to build this either.

[Aaronson-Christiano'12]: polynomials hiding subspaces

[Kane'18, Kane-Sharif-Silverberg'21]: Commuting unitaries

[Zhandry'19]: quadratic systems of equations

[Liu-Montgomery-Zhandry'23]: Walkable invariants

[Kane'18, Kane-Sharif-Silverberg'21]: quaternion algebras

[Zhandry'23]: Abelian group actions

[Khesin-Lu-Shor'22]: lattices

# Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or completely broken

Security in an idealized model

Security from a well-studied assumption

Aaronson'09 (Random stabilizer states)

[Farhi-Gosset-Hassidim-Lutomirski -Shor'10]: knots

[Aaronson-Christiano'12]: polynomials hiding subspaces

[Zhandry'19]: quadratic systems of equations

[Kane'18, Kane-Sharif-Silverberg'21]: quaternion algebras

[Khesin-Lu-Shor'22]: lattices

Aaronson'09 (Relative to a quantum oracle)

[Aaronson-Christiano'12]: classical hidden subspaces oracle

[Kane'18, Kane-Sharif-Silverberg'21]: Commuting unitaries

[Liu-Montgomery-Zhandry'23]: Walkable invariants

[Zhandry'23]: Abelian group actions

[Zhandry'19]: Post-quantum iO

Basically, the most power cryptography you could imagine, we don't know how to build this either.

This work:  
Pre-action secure groups

# A generic recipe for quantum lightning

Ingredients:

1. A collection of subspaces  $\{\Pi_i\}$ .
2. An initial state  $|\text{init}\rangle$  that is “spread out” over the subspaces.

# A generic recipe for quantum lightning

Ingredients:

1. A collection of subspaces  $\{\Pi_i\}$ .
2. An initial state  $|\text{init}\rangle$  that is “spread out” over the subspaces.

A candidate quantum lightning construction:

1. Prepare the initial state  $|\text{init}\rangle$ .
2. Measure the POVM  $\{\Pi_i\}$  to get a serial number and lightning state.

# A generic recipe for quantum lightning

Ingredients:

1. A collection of subspaces  $\{\Pi_i\}$ .
2. An initial state  $|\text{init}\rangle$  that is “spread out” over the subspaces.

Invariant subspaces of a group.

An EPR pair of “group elements”

A candidate quantum lightning construction:

1. Prepare the initial state  $|\text{init}\rangle$ .
2. Measure the POVM  $\{\Pi_i\}$  to get a serial number and lightning state.

# Quantum lightning from group actions

To understand the construction, we first need to understand three things:

- Group actions.
- Irreducible representations of groups.
- Quantum Fourier transforms for non-Abelian groups.

# Group actions

A group action is a pair of a group  $G$ , and set  $X$ , a starting element  $x \in X$ , and an operation

$$*: G \times X \mapsto X$$

# Group actions

A group action is a pair of a group  $G$ , and set  $X$ , a starting element  $x \in X$ , and an operation

$$*: G \times X \mapsto X$$

What makes it a group action is that it respects group structure:

$$g * (h * x) = gh * x$$

# Group actions

A group action is a pair of a group  $G$ , and set  $X$ , a starting element  $x \in X$ , and an operation

$$*: G \times X \mapsto X$$

What makes it a group action is that it respects group structure:

$$g * (h * x) = gh * x$$

↑  
Product in the group

# Group actions

A group action is a pair of a group  $G$ , and set  $X$ , a starting element  $x \in X$ , and an operation

$$*: G \times X \mapsto X$$

What makes it a group action is that it respects group structure:

$$g * (h * x) = gh * x$$

Product in the group

When we say we can implement a group action, we mean we can do:

$$|g\rangle|y\rangle \mapsto |g\rangle|g * y\rangle$$

# Representations and irreps

A representation of a group is mapping from a group  $G$  to unitary matrices on some vector space  $V$ .

$$\mathcal{R} : G \mapsto U(V)$$

What makes it a representation is that it also respects the group action:

$$\mathcal{R}(g)\mathcal{R}(h) = \mathcal{R}(gh)$$

# Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously diagonalize all of them.

$$\mathcal{R}(g) = V^+ \left( \sum_{\lambda} \alpha_{\lambda}(g) |\psi_{\lambda}\rangle \langle \psi_{\lambda}| \right) V$$

# Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously diagonalize all of them.

$$\mathcal{R}(g) = V^* \left( \sum_{\lambda} \alpha_{\lambda}(g) |\psi_{\lambda}\rangle \langle \psi_{\lambda}| \right) V$$

For general groups, we can only block diagonalize them!

$$\mathcal{R}(g) = V^* \left( \bigoplus_{\lambda} \varrho^{\lambda}(g) \right) V$$

# Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously diagonalize all of them.

$$\mathcal{R}(g) = V^\dagger \left( \sum_{\lambda} \alpha_{\lambda}(g) |\psi_{\lambda}\rangle \langle \psi_{\lambda}| \right) V$$

For general groups, we can only block diagonalize them!

$$\mathcal{R}(g) = V^\dagger \left( \bigoplus_{\lambda} \underbrace{\varrho^{\lambda}(g)}_{\text{These are the irreducible representations}} \right) V$$

(you can't break them down anymore)

# Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously diagonalize all of them.

$$\mathcal{R}(g) = V^+ \left( \sum_{\lambda} \alpha_{\lambda}(g) |\psi_{\lambda}\rangle\langle\psi_{\lambda}| \right) V$$

For general groups, we can only block diagonalize them!

$$\mathcal{R}(g) = V^+ \left( \bigoplus_{\lambda} \varrho^{\lambda}(g) \right) V$$

We call these irrep labels

These are the irreducible representations  
(you can't break them down anymore)

# Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously diagonalize all of them.

$$\mathcal{R}(g) = V^+ \left( \sum_{\lambda} \alpha_{\lambda}(g) |\psi_{\lambda}\rangle\langle\psi_{\lambda}| \right) V$$

For general groups, we can only block diagonalize them!

$$\mathcal{R}(g) = V^+ \left( \bigoplus_{\lambda} \varrho^{\lambda}(g) \right) V$$

We call these irrep labels

These are the irreducible representations  
(you can't break them down anymore)

We call  $V$  the  
quantum Fourier transform

# The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem weird, it has the “usual” form when we consider the left-regular representation:

$$\mathcal{R}(g)|h\rangle = |gh\rangle$$

For this representation, the quantum Fourier transform looks like:

$$\text{QFT}_G = \sum_{\lambda, i, j, g} \sqrt{\frac{d_\lambda}{|G|}} \varrho^\lambda(g)_{i,j} |\lambda, i, j\rangle \langle g|.$$

# The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem weird, it has the “usual” form when we consider the left-regular representation:

$$\mathcal{R}(g)|h\rangle = |gh\rangle$$

For this representation, the quantum Fourier transform looks like:

$$\text{QFT}_G = \sum_{\lambda, i, j, g} \sqrt{\frac{d_\lambda}{|G|}} \varrho^\lambda(g)_{i,j} |\lambda, i, j\rangle \langle g|.$$

For Abelian groups,  $i, j$  only go up to 1 and  $d_\lambda$  is 1 for all irreps.

# Quantum lightning from group actions

In the construction, we'll need to start with a group action for a group that has an **efficient quantum Fourier transform**, e.g.

1. Any group whose size doesn't scale in  $n$ .
2. Dihedral group.
3. Symmetric group.

# Quantum lightning from group actions

$\text{Mint}(1^\lambda)$ :

# Quantum lightning from group actions

$\text{Mint}(1^\lambda)$ :

- Prepare a uniform superposition over group elements.

$$\sum_{g \in G} |g\rangle \otimes |x\rangle.$$

# Quantum lightning from group actions

$\text{Mint}(1^\lambda)$ :

- Prepare a uniform superposition over group elements.

$$\sum_{g \in G} |g\rangle \otimes |x\rangle.$$

- Apply the controlled group action and then inverse the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * x\rangle.$$

# Quantum lightning from group actions

$\text{Mint}(1^\lambda)$ :

- Prepare a uniform superposition over group elements.

$$\sum_{g \in G} |g\rangle \otimes |x\rangle.$$

- Apply the controlled group action and then inverse the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * x\rangle.$$

- Apply a quantum Fourier transform to the first register.

$$\sum_{\lambda, i, j} |\lambda, i, j\rangle \otimes \sum_{g \in G} \varrho^\lambda (g^{-1})_{i,j} |g * x\rangle$$

# Quantum lightning from group actions

$\text{Mint}(1^\lambda)$ :

- Prepare a uniform superposition over group elements.

$$\sum_{g \in G} |g\rangle \otimes |x\rangle.$$

- Apply the controlled group action and then inverse the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * x\rangle.$$

- Apply a quantum Fourier transform to the first register.

$$\sum_{\lambda, i, j} |\lambda, i, j\rangle \otimes \sum_{g \in G} \underbrace{\varrho^\lambda(g^{-1})_{i,j} |g * x\rangle}_{|$\rangle}$$

# Quantum lightning from group actions

Ver( $s=(\lambda, i, j)$ ,  $|\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle$ ):

# Quantum lightning from group actions

Ver( $s=(\lambda, i, j)$ ,  $|\mathcal{E}\rangle = |\$\lambda, i, j\rangle$ ):

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

# Quantum lightning from group actions

$\text{Ver}(s=(\lambda, i, j), |\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle)$ :

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

- Apply the controlled group action and invert the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * \mathcal{E}\rangle.$$

# Quantum lightning from group actions

$\text{Ver}(s=(\lambda, i, j), |\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle)$ :

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

- Apply the controlled group action and invert the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * \mathcal{E}\rangle \propto \sum_k |\mathcal{L}^{\lambda, k, j}\rangle \otimes |\$^{\lambda, i, k}\rangle.$$

# Quantum lightning from group actions

$\text{Ver}(s=(\lambda, i, j), |\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle)$ :

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

- Apply the controlled group action and invert the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * \mathcal{E}\rangle \propto \sum_k |\mathcal{L}^{\lambda, k, j}\rangle \otimes |\$^{\lambda, i, k}\rangle.$$

$\sum_{g \in G} \varrho^\lambda (g^{-1})_{k,j} |g\rangle$



# Quantum lightning from group actions

$\text{Ver}(s=(\lambda, i, j), |\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle)$ :

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

- Apply the controlled group action and invert the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * \mathcal{E}\rangle \propto \sum_k |\mathcal{L}^{\lambda, k, j}\rangle \otimes |\$^{\lambda, i, k}\rangle.$$

- Apply a QFT to the first register and measure  $\lambda$ .

$$\sum_{g \in G} \varrho^\lambda (g^{-1})_{k,j} |g\rangle$$

# Quantum lightning from group actions

$\text{Ver}(s=(\lambda, i, j), |\mathcal{E}\rangle = |\$^{\lambda, i, j}\rangle)$ :

- Prepare a uniform superposition over group elements.

$$\sum_g |g\rangle \otimes |\mathcal{E}\rangle.$$

- Apply the controlled group action and invert the group element.

$$\sum_{g \in G} |g^{-1}\rangle \otimes |g * \mathcal{E}\rangle \propto \sum_k |\mathcal{L}^{\lambda, k, j}\rangle \otimes |\$^{\lambda, i, k}\rangle.$$

- Apply a QFT to the first register and measure  $\lambda$ .

$$\sum_{g \in G} \varrho^\lambda (g^{-1})_{k,j} |g\rangle$$

We only need the irrep label.

# Dirty fixed point testing and security

To prove security, we need to find a task that should be

1. hard with a single copy, and
2. easy with two copies.

# Dirty fixed point testing and security

To prove security, we need to find a task that should be

1. hard with a single copy, and
2. easy with two copies.

Our candidate problem is called “dirty fixed point testing”.

# Dirty fixed point testing and security

Simplified setup for dirty fixed point testing:

1. An “extraction” unitary, Extract
2. A state  $|\psi\rangle$  such that  $\text{Extract} \cdot |\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$ .

# Dirty fixed point testing and security

Simplified setup for dirty fixed point testing:

1. An “extraction” unitary,  $\text{Extract}$
2. A state  $|\psi\rangle$  such that  $\text{Extract} \cdot |\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$ .
3. Two operators  $L$  and  $R$  such that:

$\text{Extract} \cdot L \cdot |\psi\rangle = |\phi_1\rangle \otimes |\phi'_2\rangle$ , and

$\text{Extract} \cdot R \cdot |\psi\rangle$  is far from  $|\phi_1\rangle \otimes \text{id}$ .

Question: Determine if a challenger is applying  $L$  or  $R$ .

# Dirty fixed point testing and security

Dirty fixed point testing is definitely easy with two copies of  $|\psi\rangle$ :

1. Send one copy to the adversary.
2. Run Extract on both copies.
3. Swap test the first registers.

# Dirty fixed point testing and security

Dirty fixed point testing is definitely easy with two copies of  $|\psi\rangle$ :

1. Send one copy to the adversary.
2. Run Extract on both copies.
3. Swap test the first registers.

Now we need to find hard instances!

# Preaction security

Recall that a group action by element  $h$  acts as follows:

$$|g * x\rangle \mapsto |hg * x\rangle$$

# Preaction security

Recall that a group action by element  $h$  acts as follows:

$$|g * x\rangle \mapsto |hg * x\rangle$$

A preaction by  $h$  acts as follows:

$$|g * x\rangle \mapsto |gh^{-1} * x\rangle$$

# Preaction security

A preaction by  $h$  acts as follows:

$$|g * x\rangle \mapsto |gh^{-1} * x\rangle$$

# Preaction security

A preaction by  $h$  acts as follows:

$$|g * x\rangle \mapsto |gh^{-1} * x\rangle$$

Preaction security:

## **Preaction Hardness:**

It's hard to implement a random preaction  
(with high probability over the choice of group  
element)

# Preaction security

A preaction by  $h$  acts as follows:

$$|g * x\rangle \mapsto |gh^{-1} * x\rangle$$

Preaction security:

## Preaction Hardness:

It's hard to implement a random preaction  
(with high probability over the choice of group  
element)

## Preaction Indistinguishability:

It's hard to distinguish between a challenger that  
applies a random action, versus a challenger that  
applies a random action and a random preaction.

# Going back to dirty fixed point testing

$L$  and  $R$  will be either the regular group action, or a pre-action.

# Going back to dirty fixed point testing

$L$  and  $R$  will be either the regular group action, or a pre-action.

The reason we need to consider “dirty” fixed point testing is exactly because performing the group action will move our state around inside the  $(\lambda, i)$  subspace.

# Going back to dirty fixed point testing

$L$  and  $R$  will be either the regular group action, or a pre-action.

The reason we need to consider “dirty” fixed point testing is exactly because performing the group action will move our state around inside the  $(\lambda, i)$  subspace.

Implementing the Extract becomes a problem we call “Fourier extraction”, and is interesting in its own right!

# Open questions

- Can you reduce preaction security to a “standard” assumption, like discrete log being hard, or the hidden subgroup problem being hard?
- Can you build other things from preaction secure group actions? For example, one-shot signatures, or copy-protected software?
- Can we find a falsifiable variant of preaction indistinguishability? For example, if the group action had a trapdoor that allowed the challenger to implement a random preaction.