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Is this just part of a more general equivalence between measurement-
type tasks and mapping-type tasks?

Yes! But things get weird (in a good way)
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From no-cloning to quantum money

Weisner (in 1968) used this idea to find states that could be efficiently 
minted, but could not be cloned by any adversary.
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Public-key quantum money

Wiesner, Breidbart, Bennet, Brassard (1982) and Aaronson (2009) 
proposed quantum money that anyone can verify.
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Public-key quantum lightning

Zhandry (2019) formalied a variant of quantum money that is 
“collision resistant”.
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Not even the mint can make two notes 
that have the same serial number!



Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or 
completely broken

Security in an idealized model Security from a well-studied 
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Aaronson’09 (Random stabilizer 
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quaternion algebras
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A generic recipe for quantum lightning

Ingredients:
1. A collection of subspaces {Π!}.
2. An initial state |init⟩ that is “spread out” over the subspaces.

A candidate quantum lightning construction:
1. Prepare the initial state init .
2. Measure the POVM {Π!} to get a serial number and lightning state.

Invariant subspaces of a group.

An EPR pair of “group elements”



Quantum lightning from group actions

To understand the construction, we first need to understand three 
things:

• Group actions.
• Irreducible representations of groups.
• Quantum Fourier transforms for non-Abelian groups.



Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation 

∗∶ 𝐺×𝑋 ↦ 𝑋



Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation 

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥



Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation 

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

Product in the group



Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation 

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

When we say we can implement a group action, we mean we can do:
𝑔 𝑦 ↦ 𝑔 |𝑔 ∗ 𝑦⟩

Product in the group



Representations and irreps

A representation of a group is mapping from a group G to unitary 
matrices on some vector space V.  

ℛ ∶ 𝐺 ↦ 𝑈(𝑉)

What makes it a representation is that it also respects the group action:

ℛ 𝑔 ℛ ℎ = 	ℛ(𝑔ℎ)
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(you can’t break them down anymore)We call these irrep labels

We call 𝑉 the 
quantum Fourier transform



The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem 
weird, it has the “usual” form when we consider the left-regular 
representation:
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The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem 
weird, it has the “usual” form when we consider the left-regular 
representation:

ℛ 𝑔 ℎ = |𝑔ℎ⟩

For this representation, the quantum Fourier transform looks like:

QFT# = ?
",!,%,&

𝑑"
|𝐺|

𝜚" 𝑔 !,%|𝜆, 𝑖, 𝑗⟩⟨𝑔| .

For Abelian groups, 𝑖, 𝑗 only go up to 1
and 𝑑! is 1 for all irreps.



Quantum lightning from group actions

In the construction, we’ll need to start with a group action for a group 
that has an efficient quantum Fourier transform, e.g.
1. Any group whose size doesn’t scale in n.
2. Dihedral group.
3. Symmetric group.
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Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ ∝?
*

ℒ",*,% ⊗ |$",!,*⟩ .

• Apply a QFT to the first register and measure 𝜆.

We only need the irrep label.

*
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Dirty fixed point testing and security

Simplified setup for dirty fixed point testing:
1. An “extraction” unitary, Extract
2. A state |𝜓⟩ such that Extract ⋅ 𝜓 = 𝜙) ⊗ |𝜙+⟩.
3. Two operators 𝐿 and 𝑅 such that:

Extract ⋅ 𝐿 𝜓 = 𝜙) ⊗ 𝜙+, , and
Extract ⋅ 𝑅 𝜓  is far from 𝜙) ⊗ id.

Question: Determine if a challenger is applying 𝐿 or 𝑅.
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Dirty fixed point testing and security

Dirty fixed point testing is definitely easy with two copies of |𝜓⟩:
1. Send one copy to the adversary.
2. Run Extract on both copies.
3. Swap test the first registers.

Now we need to find hard instances!
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Preaction security

A preaction by h acts as follows:

𝑔 ∗ 𝑥 ↦ |𝑔ℎ() ∗ 𝑥⟩

Preaction security:

It’s hard to distinguish between a challenger that 
applies a random action, versus a challenger that 
applies a random action and a random preaction.
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Going back to dirty fixed point testing

𝐿 and 𝑅 will be the group action, and a pre-action and group action.

“Dirty” fixed point testing because performing the group action will fix 
the information in the 𝑗 register, but move around the 𝑖 subspace.

Implementing the Extract becomes Fourier extraction.
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Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

𝑗 information is extracted

Rest of the state depends only on 𝑖  

𝜆 is measured



Implementing Fourier extraction

Turns out, the following simple circuit implements Fourier extraction:

≈



Open questions

• Can you reduce preaction security to a “standard” assumption, like 
discrete log being hard, or the hidden subgroup problem being hard?

• Can you build other things from preaction secure group actions? For 
example, one-shot signatures, or copy-protected software?

• Can we find a falsifiable variant of preaction indistinguishability? For 
example, if the group action had a trapdoor that allowed the 
challenger to implement a random preaction.


