
A General Duality for
Representations of Groups
with Applications to Quantum Money, Lightning, and Fire

John Bostanci
Based on joint work with Barak Nehoran and Mark Zhandry

Flipping-Distinguishing duality

Aaronson, Atia, and Susskind showed that the following tasks are
computationally equivalent:
1. Flipping between two states |𝜓⟩ and |𝜙⟩.
2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Flipping-Distinguishing duality

Aaronson, Atia, and Susskind showed that the following tasks are
computationally equivalent:
1. Flipping between two states |𝜓⟩ and |𝜙⟩.
2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Is this just part of a more general equivalence between measurement-
type tasks and mapping-type tasks?

Flipping-Distinguishing duality

Aaronson, Atia, and Susskind showed that the following tasks are
computationally equivalent:
1. Flipping between two states |𝜓⟩ and |𝜙⟩.
2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Is this just part of a more general equivalence between measurement-
type tasks and mapping-type tasks?

Yes! But things get weird

Flipping-Distinguishing duality

Aaronson, Atia, and Susskind showed that the following tasks are
computationally equivalent:
1. Flipping between two states |𝜓⟩ and |𝜙⟩.
2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Is this just part of a more general equivalence between measurement-
type tasks and mapping-type tasks?

Yes! But things get weird (in a good way)

No-cloning

No cloning says no one can clone an arbitrary quantum state.

No-cloning

No cloning says no one can clone an arbitrary quantum state.

Does this also hold for a family of useful quantum states?

From no-cloning to quantum money

Weisner (in 1968) used this idea to find states that could be efficiently
minted, but could not be cloned by any adversary.

MINT MINT

$

$

$

s

s

s

From no-cloning to quantum money

Weisner (in 1968) used this idea to find states that could be efficiently
minted, but could not be cloned by any adversary.

MINT MINT

$

$

$

s

s

s

Each quantum bank note comes
with a classical serial number

From no-cloning to quantum money

Weisner (in 1968) used this idea to find states that could be efficiently
minted, but could not be cloned by any adversary.

MINT MINT

Only the bank can check
that the bank notes are valid

$

$

$

s

s

s

Each quantum bank note comes
with a classical serial number

Public-key quantum money

Wiesner, Breidbart, Bennet, Brassard (1982) and Aaronson (2009)
proposed quantum money that anyone can verify.

MINT

$

$

$

s

s

s

MINT

Public-key quantum lightning

Zhandry (2019) formalied a variant of quantum money that is
“collision resistant”.

MINT

s

s

s

Not even the mint can make two notes
that have the same serial number!

Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or
completely broken

Security in an idealized model Security from a well-studied
assumption

Aaronson’09 (Random stabilizer
states)

[Farhi-Gosset-Hassidim-Lutomirski
-Shor’10]: knots

[Aaronson-Christiano’12]:
polynomials hiding subspaces

[Zhandry’19]: quadratic systems
of equations

[Kane’18, Kane-Sharif-Silverberg’21]:
quaternion algebras

[Khesin-Lu-Shor’22]: lattices

Aaronson’09 (Relative to a
quantum oracle)

[Aaronson-Christiano’12]:
classical hidden subspaces oracle

[Kane’18, Kane-Sharif-Silverberg’21]:
Commuting unitaries

[Liu-Montgomery-Zhandry’23]:
Walkable invariants

[Zhandry’23]:
Abelian group actions

[Zhandry’19]:
Post-quantum iO

Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or
completely broken

Security in an idealized model Security from a well-studied
assumption

Aaronson’09 (Random stabilizer
states)

[Farhi-Gosset-Hassidim-Lutomirski
-Shor’10]: knots

[Aaronson-Christiano’12]:
polynomials hiding subspaces

[Zhandry’19]: quadratic systems
of equations

[Kane’18, Kane-Sharif-Silverberg’21]:
quaternion algebras

[Khesin-Lu-Shor’22]: lattices

Aaronson’09 (Relative to a
quantum oracle)

[Aaronson-Christiano’12]:
classical hidden subspaces oracle

[Kane’18, Kane-Sharif-Silverberg’21]:
Commuting unitaries

[Liu-Montgomery-Zhandry’23]:
Walkable invariants

[Zhandry’23]:
Abelian group actions

[Zhandry’19]:
Post-quantum iO

Basically, the most power
cryptography you could imagine, we
don’t know how to build this either.

Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or
completely broken

Security in an idealized model Security from a well-studied
assumption

Aaronson’09 (Random stabilizer
states)

[Farhi-Gosset-Hassidim-Lutomirski
-Shor’10]: knots

[Aaronson-Christiano’12]:
polynomials hiding subspaces

[Zhandry’19]: quadratic systems
of equations

[Kane’18, Kane-Sharif-Silverberg’21]:
quaternion algebras

[Khesin-Lu-Shor’22]: lattices

Aaronson’09 (Relative to a
quantum oracle)

[Aaronson-Christiano’12]:
classical hidden subspaces oracle

[Kane’18, Kane-Sharif-Silverberg’21]:
Commuting unitaries

[Liu-Montgomery-Zhandry’23]:
Walkable invariants

[Zhandry’23]:
Abelian group actions

[Zhandry’19]:
Post-quantum iO

This work:
Pre-action secure groups

Basically, the most power
cryptography you could imagine, we
don’t know how to build this either.

A generic recipe for quantum lightning

Ingredients:
1. A collection of subspaces {Π!}.
2. An initial state |init⟩ that is “spread out” over the subspaces.

A generic recipe for quantum lightning

Ingredients:
1. A collection of subspaces {Π!}.
2. An initial state |init⟩ that is “spread out” over the subspaces.

A candidate quantum lightning construction:
1. Prepare the initial state init .
2. Measure the POVM {Π!} to get a serial number and lightning state.

A generic recipe for quantum lightning

Ingredients:
1. A collection of subspaces {Π!}.
2. An initial state |init⟩ that is “spread out” over the subspaces.

A candidate quantum lightning construction:
1. Prepare the initial state init .
2. Measure the POVM {Π!} to get a serial number and lightning state.

Invariant subspaces of a group.

An EPR pair of “group elements”

Quantum lightning from group actions

To understand the construction, we first need to understand three
things:

• Group actions.
• Irreducible representations of groups.
• Quantum Fourier transforms for non-Abelian groups.

Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation

∗∶ 𝐺×𝑋 ↦ 𝑋

Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

Product in the group

Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation

∗∶ 𝐺×𝑋 ↦ 𝑋
What makes it a group action is that it respects group structure:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

When we say we can implement a group action, we mean we can do:
𝑔 𝑦 ↦ 𝑔 |𝑔 ∗ 𝑦⟩

Product in the group

Representations and irreps

A representation of a group is mapping from a group G to unitary
matrices on some vector space V.

ℛ ∶ 𝐺 ↦ 𝑈(𝑉)

What makes it a representation is that it also respects the group action:

ℛ 𝑔 ℛ ℎ = 	ℛ(𝑔ℎ)

Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously
diagonalize all of them.

ℛ 𝑔 = 𝑉 ?
"

𝛼" 𝑔 𝜓" 𝜓" 𝑉

Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously
diagonalize all of them.

ℛ 𝑔 = 𝑉 ?
"

𝛼" 𝑔 𝜓" 𝜓" 𝑉

For general groups, we can only block diagonalize them!

ℛ g = 𝑉 B𝜚" 𝑔 𝑉
𝜆

Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously
diagonalize all of them.

ℛ 𝑔 = 𝑉 ?
"

𝛼" 𝑔 𝜓" 𝜓" 𝑉

For general groups, we can only block diagonalize them!

ℛ g = 𝑉 B𝜚" 𝑔 𝑉
𝜆

These are the irreducible representations
(you can’t break them down anymore)

Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously
diagonalize all of them.

ℛ 𝑔 = 𝑉 ?
"

𝛼" 𝑔 𝜓" 𝜓" 𝑉

For general groups, we can only block diagonalize them!

ℛ g = 𝑉 B𝜚" 𝑔 𝑉
𝜆

These are the irreducible representations
(you can’t break them down anymore)We call these irrep labels

Representations and irreps

Recall that if all of these unitaries commuted, we could simultaneously
diagonalize all of them.

ℛ 𝑔 = 𝑉 ?
"

𝛼" 𝑔 𝜓" 𝜓" 𝑉

For general groups, we can only block diagonalize them!

ℛ g = 𝑉 B𝜚" 𝑔 𝑉
𝜆

These are the irreducible representations
(you can’t break them down anymore)We call these irrep labels

We call 𝑉 the
quantum Fourier transform

The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem
weird, it has the “usual” form when we consider the left-regular
representation:

ℛ 𝑔 ℎ = |𝑔ℎ⟩

For this representation, the quantum Fourier transform looks like:

QFT# = ?
",!,%,&

𝑑"
|𝐺|

𝜚" 𝑔 !,%|𝜆, 𝑖, 𝑗⟩⟨𝑔| .

The quantum Fourier transform

While the quantum Fourier transform from the last slide might seem
weird, it has the “usual” form when we consider the left-regular
representation:

ℛ 𝑔 ℎ = |𝑔ℎ⟩

For this representation, the quantum Fourier transform looks like:

QFT# = ?
",!,%,&

𝑑"
|𝐺|

𝜚" 𝑔 !,%|𝜆, 𝑖, 𝑗⟩⟨𝑔| .

For Abelian groups, 𝑖, 𝑗 only go up to 1
and 𝑑! is 1 for all irreps.

Quantum lightning from group actions

In the construction, we’ll need to start with a group action for a group
that has an efficient quantum Fourier transform, e.g.
1. Any group whose size doesn’t scale in n.
2. Dihedral group.
3. Symmetric group.

Quantum lightning from group actions

Mint(1!):

.

Quantum lightning from group actions

Mint(1!):
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

.

Quantum lightning from group actions

Mint(1!):
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the controlled group action and then inverse the group element.

"
"∈$

𝑔%& ⊗ |𝑔 ∗ 𝑥⟩ .

.

Quantum lightning from group actions

Mint(1!):
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the controlled group action and then inverse the group element.

"
"∈$

𝑔%& ⊗ |𝑔 ∗ 𝑥⟩ .

• Apply a quantum Fourier transform to the first register.

"
!,(,)

𝜆, 𝑖, 𝑗 ⊗"
"∈$

𝜚! 𝑔%& (,)|𝑔 ∗ 𝑥⟩

Quantum lightning from group actions

Mint(1!):
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the controlled group action and then inverse the group element.

"
"∈$

𝑔%& ⊗ |𝑔 ∗ 𝑥⟩ .

• Apply a quantum Fourier transform to the first register.

"
!,(,)

𝜆, 𝑖, 𝑗 ⊗"
"∈$

𝜚! 𝑔%& (,)|𝑔 ∗ 𝑥⟩

s
|$⟩

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ .

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ ∝?
*

ℒ",*,% ⊗ |$",!,*⟩ .

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ ∝?
*

ℒ",*,% ⊗ |$",!,*⟩ .

*
"∈$

𝜚! 𝑔%& ',)|𝑔⟩

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ ∝?
*

ℒ",*,% ⊗ |$",!,*⟩ .

• Apply a QFT to the first register and measure 𝜆.
*
"∈$

𝜚! 𝑔%& ',)|𝑔⟩

Quantum lightning from group actions

Ver(s=(𝜆, 𝑖, 𝑗), £ = |$",!,%⟩):
• Prepare a uniform superposition over group elements.

?
&

𝑔 ⊗ £ .

• Apply the controlled group action and invert the group element.

?
&∈#

𝑔() ⊗ |𝑔 ∗ £⟩ ∝?
*

ℒ",*,% ⊗ |$",!,*⟩ .

• Apply a QFT to the first register and measure 𝜆.

We only need the irrep label.

*
"∈$

𝜚! 𝑔%& ',)|𝑔⟩

Dirty fixed point testing and security

To prove security, we need to find a task that should be

1. hard with a single copy, and
2. easy with two copies.

Dirty fixed point testing and security

To prove security, we need to find a task that should be

1. hard with a single copy, and
2. easy with two copies.

Our candidate problem is called “dirty fixed point testing”.

Dirty fixed point testing and security

Simplified setup for dirty fixed point testing:
1. An “extraction” unitary, Extract
2. A state |𝜓⟩ such that Extract ⋅ 𝜓 = 𝜙) ⊗ |𝜙+⟩.

Dirty fixed point testing and security

Simplified setup for dirty fixed point testing:
1. An “extraction” unitary, Extract
2. A state |𝜓⟩ such that Extract ⋅ 𝜓 = 𝜙) ⊗ |𝜙+⟩.
3. Two operators 𝐿 and 𝑅 such that:

Extract ⋅ 𝐿 𝜓 = 𝜙) ⊗ 𝜙+, , and
Extract ⋅ 𝑅 𝜓 is far from 𝜙) ⊗ id.

Question: Determine if a challenger is applying 𝐿 or 𝑅.

Dirty fixed point testing and security

Dirty fixed point testing is definitely easy with two copies of |𝜓⟩:
1. Send one copy to the adversary.
2. Run Extract on both copies.
3. Swap test the first registers.

Dirty fixed point testing and security

Dirty fixed point testing is definitely easy with two copies of |𝜓⟩:
1. Send one copy to the adversary.
2. Run Extract on both copies.
3. Swap test the first registers.

Now we need to find hard instances!

Preaction security

Recall that a group action by element h acts as follows:

𝑔 ∗ 𝑥 ↦ |ℎ𝑔 ∗ 𝑥⟩

Preaction security

Recall that a group action by element h acts as follows:

𝑔 ∗ 𝑥 ↦ |ℎ𝑔 ∗ 𝑥⟩

A preaction by h acts as follows:

𝑔 ∗ 𝑥 ↦ |𝑔ℎ() ∗ 𝑥⟩

Preaction security

A preaction by h acts as follows:

𝑔 ∗ 𝑥 ↦ |𝑔ℎ() ∗ 𝑥⟩

Preaction security

A preaction by h acts as follows:

𝑔 ∗ 𝑥 ↦ |𝑔ℎ() ∗ 𝑥⟩

Preaction security:

It’s hard to distinguish between a challenger that
applies a random action, versus a challenger that
applies a random action and a random preaction.

Going back to dirty fixed point testing

𝐿 and 𝑅 will be the group action, and a pre-action and group action.

Going back to dirty fixed point testing

𝐿 and 𝑅 will be the group action, and a pre-action and group action.

“Dirty” fixed point testing because performing the group action will fix
the information in the 𝑗 register, but move around the 𝑖 subspace.

Going back to dirty fixed point testing

𝐿 and 𝑅 will be the group action, and a pre-action and group action.

“Dirty” fixed point testing because performing the group action will fix
the information in the 𝑗 register, but move around the 𝑖 subspace.

Implementing the Extract becomes Fourier extraction.

Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

𝜆 is measured

Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

𝑗 information is extracted

𝜆 is measured

Back to duality

We show that the following tasks are computationally equivalent:
1. Implementing a representation of a group, 𝑈&.

2. Implementing a Fourier extraction in the irreps of the representation.

Recall AAS duality:

1. Flipping between two states |𝜓⟩ and |𝜙⟩.

2. Distinguishing between 𝜓 + |𝜙⟩ and 𝜓 − |𝜙⟩.

𝑗 information is extracted

Rest of the state depends only on 𝑖

𝜆 is measured

Implementing Fourier extraction

Turns out, the following simple circuit implements Fourier extraction:

≈

Open questions

• Can you reduce preaction security to a “standard” assumption, like
discrete log being hard, or the hidden subgroup problem being hard?

• Can you build other things from preaction secure group actions? For
example, one-shot signatures, or copy-protected software?

• Can we find a falsifiable variant of preaction indistinguishability? For
example, if the group action had a trapdoor that allowed the
challenger to implement a random preaction.

