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Discovery Fiction: Quantum Lightning from 
Abelian Group Actions
• Zhandry’23 described an elegant and simple way to construct 

quantum money from Abelian group actions.
• However, restricting to Abelian groups meant that the security proof 

required a black-box assumption, and complicated the scheme.

• We hoped that generalizing the construction to non-Abelian groups 
might fix these problems, but it’s not that easy.
• Along the way, identified an interesting algorithmic task concerning 

representations of groups.



The General Quantum Duality 
Theorem for Representations of 
Groups



Swapping-distinguishing duality

Imagine we have two orthogonal states, |𝜓⟩ and 𝜙 .
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Swapping-distinguishing duality

How hard is it to (approximately) swap 𝜓 ↔ 𝜙 ?
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Swapping-distinguishing duality

Theorem [AAS’20]: You can efficiently implement swap between |𝜙⟩
 and |𝜓⟩ if and only if you can efficiently distinguish between 𝜙 + |𝜓⟩ 
and 𝜙 − 𝜓 .

|𝜓⟩|𝜙⟩ |𝜙⟩ + |𝜓⟩

𝜙 − |𝜓⟩



Generalized duality

Now say that I have many states {|𝜓!⟩} and a collection of mappings 
between then, {𝑈"}.  Is there some measurement that characterizes the 
complexity of implementing all of those mappings?
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Generalized duality

Now say that I have many states {|𝜓!⟩} and a collection of mappings 
between then, {𝑈"}.  Is there some measurement task that characterizes 
the complexity of implementing all of those mappings?
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𝑈
Representation 
of a group
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Representations of groups

A representation of a group is mapping from a group G to unitary 
matrices on some vector space V.  

ℛ ∶ 𝐺 ↦ 𝑈(𝑉)

What makes it a representation is that it also respects the group action:

ℛ 𝑔 ℛ ℎ = 	ℛ(𝑔ℎ)



Irreducible representations

For every group 𝐺, there is a dual group 6𝐺, and a collection of 
representations of 𝐺,

{𝜌#(𝑔): 𝜆 ∈ 6𝐺}

Which we call the irreducible representations of 𝐺.  



Irreducible representations

Important fact about irreps: For every representation ℛ on vector space 
𝑉, there is a decomposition of 𝑉 into a direct sum of subspaces

𝑉 =⊕#,% 𝑊#,%

Such that for every group element,

ℛ 𝑔 ≃⊕#,% 𝜚#(𝑔)
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diagonalize all of them.   
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Irreducible representations

Recall that if all of these unitaries commuted, we could simultaneously 
diagonalize all of them.   

ℛ 𝑔 = 𝑉 ?
#

𝛼# 𝑔 𝜓# 𝜓# 𝑉

For general groups, we can only block diagonalize them!

ℛ g = 𝑉 B𝜚# 𝑔 𝑉
𝜆

These are the irreducible representations
(you can’t break them down anymore)

We call 𝑉 the 
quantum Fourier transform
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Then doing a full measurement in the Fourier basis is like mapping:
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Fourier extraction

If we write basis for each 𝑊#,%  as follows:

𝑊#,% = 	span{|𝜓%,&# ⟩}.

Then doing a full measurement in the Fourier basis is like mapping:

𝜓%,&# ↦ 𝜆, 𝑖, 𝑗 .

The representation behaves identically on different copies of 
𝑊%,', making it difficult to figure out 𝑖 in a black-box way.



Fourier extraction

Equivalent of a “coherent” measurement in the Fourier basis, up to the 
decomposition of different copies of the same 𝑊#.
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Fourier extraction

Equivalent of a “coherent” measurement in the Fourier basis, up to the 
decomposition of different copies of the same 𝑊#.

?
&

𝛼&|𝜓%,&# ⟩ ↦ 𝜙%# 𝜆 ⊗?
&

𝛼&|𝑗⟩

Think of this as a hidden basis state that 
encodes information about 𝑖.

Information about 𝑗 has been “extracted” 
leaving behind a state that only depends on 𝜆, 𝑖.



Fourier extraction

Here is what “ideal” Fourier extraction looks like:
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Fourier extraction

Here is what “ideal” Fourier extraction looks like:

𝜆

𝑗

|𝜙'%⟩

This is not the normal Fourier 
transform, but the Fourier transform 
for an arbitrary representation!



Fourier extraction

Turns out, it’s equivalent to the following (where the measurement is 
only on the irrep label).

≈



General duality theorem

Theorem: You can efficiently implement a group representation ℛ if 
and only if you can efficiently implement Fourier extraction for the 
irreducible subspaces of ℛ.



Quantum Lightning from Non-
Abelian Group Actions



The no-cloning theorem

No cloning says no one can clone an arbitrary quantum state.



Private-key quantum money

Weisner (in 1970) used this idea to find states that could be efficiently 
minted, but could not be cloned by any adversary.
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Private-key quantum money

Weisner (in 1970) used this idea to find states that could be efficiently 
minted, but could not be cloned by any adversary.

MINT MINT

Only the bank can check 
that the bank notes are valid

$
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Each quantum bank note comes 
with a classical serial number



Public-key quantum money

Aaronson (2009) proposed quantum money that anyone can verify.
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MINT

Public-key quantum lightning

Zhandry (2019) proposed a variant of quantum money that is 
“collision resistant”.

MINT

s

s

s

Not even the mint can make two notes 
that have the same serial number!
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Unfortunately, constructing quantum money has been really hard!

Only has conjectured security, or 
completely broken

Security in an idealized model

Aaronson’09 (Random stabilizer 
states)

[Farhi-Gosset-Hassidim-Lutomirski
-Shor’10]: knots

[Aaronson-Christiano’12]:
polynomials hiding subspaces

[Zhandry’19]: quadratic systems 
of equations

[Kane’18, Kane-Sharif-Silverberg’21]: 
quaternion algebras

[Khesin-Lu-Shor’22]: lattices

Aaronson’09 (Relative to a 
quantum oracle)

[Aaronson-Christiano’12]:
classical hidden subspaces oracle

[Kane’18, Kane-Sharif-Silverberg’21]:
Commuting unitaries

[Liu-Montgomery-Zhandry’23]:
Walkable invariants

[Zhandry’23]:
Abelian group actions

[Zhandry’19]:
Post-quantum iO

Basically, the most power 
cryptography you could imagine, 
we don’t know how to build this 
either

This work:
Preaction secure groups

Adapted from Zhandry’23

Security from a plain-model 
computational assumption
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Group actions

A group action is a pair of a group G, and set X, a starting element 𝑥 ∈
𝑋, and an operation 

∗∶ 𝐺×𝑋 ↦ 𝑋

What makes it a group action is that it is also a group representation:

𝑔 ∗ ℎ ∗ 𝑥 = 𝑔ℎ ∗ 𝑥

Product in the group



Reminder: the quantum Fourier transform

Recall, we call any transformation that maps from the standard basis to 
the Fourier basis the “Fourier transform”.

For the left-regular representation, 𝑈" ℎ ↦ |𝑔ℎ⟩, one nice Fourier 
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Reminder: the quantum Fourier transform

Recall, we call any transformation that maps from the standard basis to 
the Fourier basis the “Fourier transform”.

For the left-regular representation, 𝑈" ℎ ↦ |𝑔ℎ⟩, one nice Fourier 
transform looks like this:

QFT = ?
"∈(

?
#,%,&∈[*+,(.!)]

𝑑#
𝐺
𝜚# 𝑔 %,&|𝜆, 𝑖, 𝑗⟩⟨𝑔|

The “textbook” definition of 
the QFT for general groups



Quantum lightning from group actions

In the construction, we’ll need to start with a group action for a group 
that has an efficient quantum Fourier transform, e.g.
1. Any group whose size doesn’t scale in n.
2. Dihedral group.
3. Symmetric group.



Quantum lightning from group actions

Mint(1!): 

.



Quantum lightning from group actions

Mint(1!): 
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

.



Quantum lightning from group actions

Mint(1!): 
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the group action.

"
"∈$

𝑔 ⊗ |𝑔 ∗ 𝑥⟩ .

.



Quantum lightning from group actions

Mint(1!): 
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the group action.

"
"∈$

𝑔 ⊗ |𝑔 ∗ 𝑥⟩ .

• Apply a quantum Fourier transform to the first register.

"
!,&,'

𝜆, 𝑖, 𝑗 ⊗"
"∈$

𝜚! 𝑔() &,'|𝑔 ∗ 𝑥⟩



Quantum lightning from group actions

Mint(1!): 
• Prepare a uniform superposition over group elements.

"
"∈$

𝑔 ⊗ 𝑥 .

• Apply the group action.

"
"∈$

𝑔 ⊗ |𝑔 ∗ 𝑥⟩ .

• Apply a quantum Fourier transform to the first register.

"
!,&,'

𝜆, 𝑖, 𝑗 ⊗"
"∈$

𝜚! 𝑔() &,'|𝑔 ∗ 𝑥⟩

s |$(⟩
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Quantum lightning from group actions

Ver(s=𝜆, £ = |$#,%,&⟩):
• Prepare a uniform superposition over group elements.
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Quantum lightning from group actions

Ver(s=𝜆, £ = |$#,%,&⟩):
• Prepare a uniform superposition over group elements.

?
"

𝑔 ⊗ £ .

• Apply the group action.

?
"∈(

𝑔 ⊗ |𝑔 ∗ £⟩ ∝?
1

ℒ#,1,& ⊗ |$#,%,1⟩ .

• Apply a QFT to the first register and measure 𝜆.

Basically, measure in the Fourier basis,
but only check the irrep label.

/
)∈+

𝜚% 𝑔,! -,.|𝑔⟩
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copy of a quantum state?”



Security of the scheme

In order to prove lightning security, we need to answer the following 
question: 

“What is something that you can do with two copies, but not with one 
copy of a quantum state?”

Our answer: Distinguish between an operation that preserves your state 
(up to an arbitrary phase), and one that moves your state around.
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Preaction security

A preaction by h acts as follows:

𝑔 ∗ 𝑥 ↦ |𝑔ℎ23 ∗ 𝑥⟩

Preaction security:

Preaction Hardness:

It’s hard to implement a random preaction
(with high probability over the choice of group 

element)

Preaction Indistinguishability:

It’s hard to distinguish between a challenger that 
applies a random action, versus a challenger that 
applies a random action and a random preaction.
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Security reduction (simplified)

Given two copies of the money state:
1. Send one copy to the preaction security challenger.
2. Perform Fourier subspace extraction on both.

3. Do a SWAP test between the |𝜙%#⟩ registers.

This test tells us if 𝑖 stayed the same.  A preaction will randomize |𝜙%#⟩, 
but the (left) group action won’t, so we can distinguish the two cases.



Quantum Lightning from Preaction Security

Theorem: Given any group action that is preaction 
secure, the scheme we described is a secure quantum 
lightning scheme.
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symmetric group, set elements are 𝑛×𝑚 matrices with entries from 
some finite field 𝔽 (think: codewords of an error correcting code).
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Instantiations

Group action from the McEliece cryptosystem.  The group action is the 
symmetric group, set elements are 𝑛×𝑚 matrices with entries from 
some finite field 𝔽 (think: codewords of an error correcting code).

A permutation (in 𝑆4) acts on a set element by:
1. Permute the columns of the matrix.
2. Row-reduce the matrix.

We conjecture that this is preaction secure.



Open questions

• Can you reduce preaction security to a “standard” assumption, like 
discrete log being hard, or the hidden subgroup problem being hard?

• Can you build other things from preaction secure group actions? For 
example, one-shot signatures, or copy-protected software?

• Can we find an efficiently falsifiable variant of preaction 
indistinguishability? For example, if the group action had a trapdoor 
that allowed the challenger to implement a random preaction.


