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Given a model class C and copies of an arbitrary quantum state 𝜌, 
output a description of the closest state in C to 𝜌.

𝐶, 𝜌⊗𝑛 → 𝜙 ∈ 𝐶: OPT − 𝜙 𝜌 𝜙 ≤ 𝜖

Shadow tomography provides a sample efficient, but not 
computationally efficient, solution.
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Agnostic tomography is hard

Even for “simple” model classes like product states, agnostic 
tomography isn’t immediate.  Consider the following state:

1 − 𝜖 0𝑛 + 𝜖|+𝑛⟩

The closest product state is |0𝑛⟩

Every marginal is ≈ 1 − 𝜖 0 + 𝜖 1 .  
Taking the tensor product is bad!



Our results (1)

Main result: there is an algorithm for agnostic tomography of product 
states that has sample and time complexity 

poly(𝑛
𝑝𝑜𝑙𝑦

1
𝜖 )



Our results (2)

Suppose there was an polynomial-time algorithm for agnostic 
tomography of product states when 𝜖 is inverse polynomial in n, i.e. 
outputting a state satisfying

𝜙 𝜌 𝜙 ≥ OPT −
1

poly(𝑛)

Then BQP contains NP.
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Our results (3)

In some settings, we can get fully polynomial run-times!

• When OPT ≥
5

6
, we give an algorithm that uses 𝑂

𝑛

𝜖
 copies and runs 

in time 𝑂 𝑛2log 𝑛 .

• When we have the promise that each qudit can only be one of s 
states, and all of the states have fidelity at most 1 - 𝛿, we give an 
algorithm that runs in time poly 𝑛𝑠 log 1/𝜖 /𝛿.

• We give an improper tomography algorithm for matrix product states 
that runs in time poly(𝑛, 1/𝜖).  
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the main algorithm.

• Going from local to global

• Reduction to polynomial optimization

• Solving the polynomial optimization

• Putting everything together
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We saw before that simply taking the single qubit marginals of the state 
and taking their tensor product is a bad idea.

Lets try to improve our approach a little bit!
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have high fidelity 𝜌:

𝜋 ⊗ 𝜋𝑘

However: If 𝜋  has fidelity OPT − 𝜖, and we’re taking an 𝜖-net, every 
state of this form could have fidelity OPT − 2𝜖.  

We lose a little on every step!
Can we fix this loss?
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𝜋 Ԧ𝑧 = ໆ
0 + 𝑧𝑖|1⟩

1 + 𝑧𝑖
2

If we assume that our starting product state 𝜋 = |0𝑛⟩, then when we 
say close to 𝜋 , we mean that Ԧ𝑧 2 is small.
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Hamming weight strings.

Lemma: Assume that Ԧ𝑧 2 ≤ 𝐶, and let 𝑑 = 𝑂(𝐶 +  log 1/𝜖 ).  Let Π𝑑  
be the projection onto all strings |x⟩ with Hamming weight at most 𝑑, 
then 

Π𝑑 𝜋 Ԧ𝑧 2 ≥ 1 − 𝜖

In other words, if we want to (approximately) optimize Ԧ𝑧, we just have 
to learn 𝜌 on the small subspace Π𝑑.
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𝑑

= 𝑂(𝑛𝐶+log 1/𝜖 ), we can do subspace 

tomography with copy and time complexity poly(𝑛𝐶+log 1/𝜖 ).

The rest of our algorithm will be completely classical!
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How do we deal with this annoying term in front?

Idea 2: Not too many 𝑧𝑖  can be large if 𝑧𝑖 2 ≤ 𝐶, just guess which 𝑧𝑖 
are large and guess their values (i.e. just brute force over them), and 
optimize over the remaining terms (with smaller norm). 



How do we deal with this annoying term in front?

After guessing, up to re-scaling, we can say that maximizing over close 
product states is equivalent to finding:

max
Ԧ𝑧 2≤1

‖ Ԧ𝑧‖∞≤𝜇

𝑝( Ԧ𝑧) 

Where p is a degree 2d polynomial.



But… solving a polynomial optimization is not easy in general.  
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Luckily, our polynomial only takes on small values (since it corresponds 
to a fidelity between two quantum states).  So we can prove the 
following:

Lemma (informal): There exists a subspace V of dimension 𝑂(𝑑2/𝜖) 
such that 

𝑝 Ԧ𝑧 − 𝑝 𝑉 Ԧ𝑧 ≤ 𝜖.

What does it mean: To optimize the polynomial *without ℓ∞ 
constaints*, we just have to brute force over V, taking time 𝑂((

)
1/

𝜖 poly(𝑑,𝜖)).

Again, we can just guess the coodinates that 
saturate the constraints and remove them!
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3. Guess which coordinates saturate ℓ∞ constraints exactly.

4. For the remaining coordinates, solve the ℓ2 constrained polynomial 
optimization problem.



Putting everything together

Full algorithm (for growing a single candidate):

1. Use subspace tomography to get a description of 𝜌𝑑.

2. Guess the coordinates of 𝑧𝑖  that are large and their values.

3. Guess which coordinates saturate ℓ∞ constraints exactly.

4. For the remaining coordinates, solve the ℓ2 constrained polynomial 
optimization problem.

In reality, we try to maintain a set of “all” good candidate states, and 
grow them all!
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Lower bound

The lower bound comes from basically inverting the construction for 
the d = 2 subspace.  Given a 4-tensor (think: degree 4 polynomial),

𝑇 ↦ ෍

𝑖,𝑗,𝑘,ℓ

𝑇𝑖,𝑗,𝑘,ℓ|𝑒𝑖 , 𝑒𝑗 , 𝑒𝑘 , 𝑒ℓ⟩

The best product state approximation, Ԧ𝑧, to this* yields a solution to 
the tensor optimization 𝑇 Ԧ𝑧, Ԧ𝑧, Ԧ𝑧, Ԧ𝑧 , which is NP-hard.



Open questions

• Agnostic tomography for other states?
• Free-Fermionic states?
• Low-degree circuits?

• QAC0?

• Tolerant testing for these models?

• Agnostic learning for other models?
• Unitaries/Channels?
• Hamiltonians evolution?

Thanks for listening!
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Lemma: Assume that Ԧ𝑧 2 ≤ 𝐶, and let 𝑑 = 𝑂(𝐶 +  log 1/𝜖 ).  Let Π𝑑  
be the projection onto all strings |x⟩ with Hamming weight at most 𝑑, 
then 

Π𝑑 𝜋 Ԧ𝑧 2 ≥ 1 − 𝜖

Proof: The mass on any string x is given by

𝑐𝑥
2 =

1

∏(1 + 𝑧𝑖
2)

ෑ

𝑥=1

𝑧𝑖
2



Lemma: Assume that Ԧ𝑧 2 ≤ 𝐶, and let 𝑑 = 𝑂(𝐶 +  log 1/𝜖 ).  Let Π𝑑  
be the projection onto all strings |x⟩ with Hamming weight at most 𝑑, 
then 

Π𝑑 𝜋 Ԧ𝑧 2 ≥ 1 − 𝜖

Proof: The mass on any string x is given by

𝑐𝑥
2 =

1

∏(1 + 𝑧𝑖
2)

ෑ

𝑥=1

𝑧𝑖
2

As if the i’th coin 

has probability 
𝑧𝑖

2

1+ 𝑧𝑖
2



Lemma: Assume that Ԧ𝑧 2 ≤ 𝐶, and let 𝑑 = 𝑂(𝐶 +  log 1/𝜖 ).  Let Π𝑑  
be the projection onto all strings |x⟩ with Hamming weight at most 𝑑, 
then 

Π𝑑 𝜋 Ԧ𝑧 2 ≥ 1 − 𝜖

Proof: The mass on any string x is given by

𝑐𝑥
2 =

1

∏(1 + 𝑧𝑖
2)

ෑ

𝑥=1

𝑧𝑖
2

Chernoff bound says this is small when |x| is too large!

As if the i’th coin 

has probability 
𝑧𝑖
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