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Given a model class C and copies of an arbitrary quantum state p,
output a description of the closest state in C to p.

(C,p®") > |p) € C:OPT —(plpld) < ¢

Shadow tomography provides a sample efficient, but not
computationally efficient, solution.
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Agnostic tomography is hard

Even for “simple” model classes like product states, agnostic
tomography isn’t immediate. Consider the following state:

V1 — €|0™) + \e|+™)
-

The closest product state is |0™)

Every marginal is = V1 — €|0) + /€| 1).

Taking the tensor product is bad!



Our results (1)

Main result: there is an algorithm for agnostic tomography of product
states that has sample and time complexity
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Our results (2)

Suppose there was an polynomial-time algorithm for agnostic
tomography of product states when € is inverse polynomial in n, i.e.
outputting a state satisfying

O _
(plplgp) = OPT e

Then BQP contains NP.
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Our results (3)

In some settings, we can get fully polynomial run-times!

n

* When OPT > 2, we give an algorithm that uses O ( ) copies and runs

in time 0(n%log n).

* When we have the promise that each qudit can only be one of s
states, and all of the states have fidelity at most 1 - §, we give an

algorithm that runs in time poly(ns)!°8(1/€)/s

€

* We give an improper tomography algorithm for matrix product states
that runs in time poly(n, 1/¢).
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e Putting everything together
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We saw before that simply taking the single qubit marginals of the state
and taking their tensor product is a bad idea.

Lets try to improve our approach a little bit!
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However: If |) has fidelity OPT — €, and we’re taking an e-net, every
state of this form could have fidelity OPT — 2e¢.

N

We lose a little on every step!
Can we fix this loss?
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Main problem: Let |) be a product state such that (r|p|m) = OPT —
10 €, can we find a nearby |r') such that (r'|p|7') = OPT — €?

/

|r") should incorporate something global around p

Searching only near |r) helps with efficiency



Main problem: Let |m) be a product state such that (r|p|m) = OPT —
10 €, can we find a nearby |7') such that (7’| p|’) = OPT — €?



We can naturally parametrize a product state using a vector Z € C":
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We can naturally parametrize a product state using a vector Z € C":
[0) + z;|1)
|TT3) =
V1+|z]?

If we assume that our starting product state |) = |0™), then when we
say close to |), we mean that [|Z]|, is small.
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Observation: When ||Z]|, is small, |73) is mostly supported on low
Hamming weight strings.

Lemma: Assume that [|Z]|, < C,and letd = O(C + log(1/€)). LetIl,
be the projection onto all strings |x) with Hamming weight at most d,

then
Mg ), =1 —€

In other words, if we want to (approximately) optimize Z, we just have
to learn p on the small subspace I1;.
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Since dim(I1,;) = (n) 0 (n¢+1°8(1/6)) ‘we can do subspace
tomography with copy and time complexity poly(nc“og(l/e))

The rest of our algorithm will be completely classical!
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Restrict p to a low Hamming weight subspace
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Recall: Let |r) be a product state such that (r|p|m) = OPT — 10 ¢, can
we find a nearby |7} such that (7’| p4|t") = OPT — €?

We want to optimize over ||Z]|, < C:
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How do we deal with this annoying term in front?

Idea 2: Not too many z; can be large if || z;||, < C, just guess which z;
are large and guess their values (i.e. just brute force over them), and
optimize over the remaining terms (with smaller norm).



How do we deal with this annoying term in front?

After guessing, up to re-scaling, we can say that maximizing over close
product states is equivalent to finding:

max p(Z)

1zl =1

1Zllcosp

Where p is a degree 2d polynomial.



But... solving a polynomial optimization is not easy in general.
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Luckily, our polynomial only takes on small values (since it corresponds
to a fidelity between two quantum states). So we can prove the
following:

Lemma (informal): There exists a subspace V of dimension 0(d*/¢)
such that

p(2) —p(V2)| <e.

What does it mean: To optimize the polynomial *without €,

constaints*®, we just have to brute force over V, taking time O (&l/
E)poly(d,e)).

Again, we can just guess the coodinates that
saturate the constraints and remove them!
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For the remaining coordinates, solve the £, constrained polynomial
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Putting everything together

Full algorithm (for growing a single candidate):

1. Use subspace tomography to get a description of p,.

2. Guess the coordinates of z; that are large and their values.
3. Guess which coordinates saturate £, constraints exactly.
4

For the remaining coordinates, solve the £, constrained polynomial
optimization problem.

In reality, we try to maintain a set of “all” good candidate states, and
grow them all!
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Lower bound

The lower bound comes from basically inverting the construction for
the d = 2 subspace. Given a 4-tensor (think: degree 4 polynomial),

T - Z T; ikelei e ek, ep)
TR

The best product state approximation, Z, to this* yields a solution to
the tensor optimization T(Z, z, Z, z), which is NP-hard.



Open questions

* Agnostic tomography for other states?
* Free-Fermionic states?

* Low-degree circuits?
* QAC,?
* Tolerant testing for these models?

e Agnostic learning for other models?
e Unitaries/Channels?
 Hamiltonians evolution?

Thanks for listening!



Extra slides



Lemma: Assume that [|Z]|, < C,and letd = O(C + log(1/€)). LetIl,
be the projection onto all strings |x) with Hamming weight at most d,
then
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Lemma: Assume that [|Z]|, < C,and letd = O(C + log(1/€)). LetIl,
be the projection onto all strings |x) with Hamming weight at most d,
then

Mg [mz)lz =21 —e As if the i’th coin
. : . .
Proof: The mass on any string x is given by / has probability 1z

1 1+ Zil2
lcxe|? = ‘ ‘IZ-I2
1+ |z]? l
ALJL( | l| )x=1

Chernoff bound says this is small when | x| is too large!
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