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following holds:

F(p,0) = max{(D|id @ U|C)
U

In other words, the best you can map from | C) to | D), only touching the B register, is
given by the fidelity of the reduced states on the A register.

We call such a unitary U an Uhlmann transtormation.
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1. Optimal protocols for decoding quantum channels, compressing quantum
information, entanglement distillation, state transfer, etc. all involve an Uhlmann
transformation!

2. The hardness of Uhlmann transformations (for ethiciently preparable states) is a
necessary condition for cryptography to exist! [ Yan22]

3. They characterize interesting complexity classes like the class of zero-knowledge
provable unitaries, and the class of unitaries that can be implemented with the help of
interaction with an all-powerful prover. [BEM+23]

4. Studying them will have interesting connections to math too! (Foreshadowing)
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The canonical Uhlmann transformation

In general, there could be many Uhlmann transtormations for a pair of states (e.g., that
differ oft of the support of | C). But there is a way to define a canonical isometry:

W = sen (Tr, (1DXCI) )

[t is known that two different Uhlmann transtformations of the same pair of states must
look the same on the support of W! [BEM+23]
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Approximate Uhlmann transforms

Say you found a unitary U such that:
(D|1d® U|C) = F(p,0) — €,

Can you say that this U is “close” to an Uhlmann transformation in some sense?

Our answer: Yes, up to some parameters!
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k= | p~"* - Image(p'“op'*) - p'* and 7 = Ay, (p” #o) .

op

Matrix geometric mean: A#B = AlZ. (A‘l/zBA—l/z)l/2 A2
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Proof Sketch

For our constraint, we can write it in a more standard form as: A \/— 5
— g\/_

/

(D]id® U|C) = Tr <\/;U\/ﬁ) _ (U\/,E\/;)
Since we want this to be a real number, we can write this constraint as:
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> (Tr (UA*) + Tr(U*A)) .
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Proof Sketch

For the objective, we can expand it out as:

| id® (W—vyw=w|C) ||~ = (Clid ® W*W|C)
+(C|id @ (W*WU*UW*W)| C)
+2Re(C|id ® (W*WW+UW*W)| C)
< 2Tr(W*Wp) — (Tr(UW*WpW*) + Tr(WpW*WU)) .

We will use the second term as the new objective function (since the first term does not
depend on U).



Proof Sketch

Let’s think about the theorem statement as a maximization problem:

Maximize over U: — (Te(UW*WpW*) + Te(WpW*WU)) .

1
Subject to: > (Tr (UA*) + Tr(U*A)) = F(p,0) — €,
i
(U>X< 1d)

Now, this can be transtformed into a standard form semidefinite program.
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Proof Sketch

The dual of the SDP is:

Minimize over Y;, Y,, a: Tr(Y;) + Tr(Y,) + « (F(p, 0) — 6)

1
| Yi, SaAl — WpW*W
Subject to: > —
% aA* Y, 2 \—-W*WpW
¥,
Y = Y, Hermitian

It we find any feasible solution to this, we get an upper bound on the rigidity.



Proof Sketch

We are going to identify a nice matrix/choice of a to plug in. Define the following:

a = —k/n
1
T = 5 (aA* + PpW*)

Then we plug in the following for Y, ¥, and we get the answer we want.

Y, =/T*T

—1
n:&(VWT)iW
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Is the dependence on these numbers k and 7 necessary? Yes, to some extent

Theorem: For every 7, there is a pair of states whose matrix geometric mean has smallest
eigenvalue 7, and there is a transformation that saturates the bound, i.e.

|id ® (W — U)W*W| C)||> > 2eln

Theorem: For every k > 1 and all €, thgre is a pair of states with# > 1 and

k= || p~V% - Image(p'?cp'’?) - p!/? such that
op

lid ® (W — U)W*W| C)||*> > ke
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Uhlmann transformations for math

Our rigidity theorem seems to be a very general form of rigidity, it implies other well
known stability theorems. Let’s consider one such example!

A representation of a group is a mapping from a group G to unitaries on some vector

space. The representation satisties U,U), = U,

An approximate representation is a collection of unitaries such that

1
R |U,U), — Ugh”ﬂ <€




Uhlmann transformations for math

Given an e-approximate representation, how close is it to a real representation? Let’s
consider the following pair of states:

9
1
EH
M
—

1d ® Ug) |EPR>A|31 ‘ g>Bz ‘ h>B3 ’

1 .
| D) = G Z (ld X Uhg> |[EPR)sg,18)8,1 /)8, -
g.heG

Let’s consider the Uhlmann transformations that act on the B register.



Uhlmann transformations for math

! .

€)== gﬁZEG(ld® U, ) |EPR) [ g} | ).
1 |

D)=~ gﬁze}G(ld® Uye ) |EPR) | 8) 1 ).

W= Z (Uthg)B X ‘ga hxgah‘52|33°

gh .
An approximate one 1s:

U= D, (Up)g ®hXhlg,.
h



Uhlmann transformations for math

Applying the rigidity theorem to these two unitaries:

W = Z(Uth*) ® 18, /X. g, and U= . (Un)g ® [hXhlg
h

Gives us the following: There exists an isometry V and exact representation R

1
—E, |IU, = VR@VIE| < ¢




Next steps?

We proved a rigidity theorem for Uhlmann transtormations, but open questions still
remain.

1. Can we relate other notions of stability to Uhlmann transformations? For example, is
CHSH rigidity a consequence of the rigidity of the Uhlmann transformation for some
pair of states? What about general algebra’s and non-local games?

2. There is a way to round states to nearby states so that # (the minimum eigenvalue of
the matrix geometric mean) is well behaved, does the same exist for «?
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Thanks for listening!



