

Local transformations of bipartite entanglement are rigid

John Bostancı

Joint work with Tony Metger and Henry Yuen

Uhlmann transformations

Given two states $|C\rangle_{AB}$ and $|D\rangle_{AB}$, with reduced states on the A register ρ and σ , the following holds:

$$F(\rho, \sigma) = \max_U \langle D | \text{id} \otimes U | C \rangle$$

Uhlmann transformations

Given two states $|C\rangle_{AB}$ and $|D\rangle_{AB}$, with reduced states on the A register ρ and σ , the following holds:

$$F(\rho, \sigma) = \max_U \langle D | \text{id} \otimes U | C \rangle$$

In other words, the best you can map from $|C\rangle$ to $|D\rangle$, only touching the B register, is given by the fidelity of the reduced states on the A register.

Uhlmann transformations

Given two states $|C\rangle_{AB}$ and $|D\rangle_{AB}$, with reduced states on the A register ρ and σ , the following holds:

$$F(\rho, \sigma) = \max_U \langle D | \text{id} \otimes U | C \rangle$$

In other words, the best you can map from $|C\rangle$ to $|D\rangle$, only touching the B register, is given by the fidelity of the reduced states on the A register.

We call such a unitary U an Uhlmann transformation.

Why care about Uhlmann transformations?

They appear in many fields:

1. Optimal protocols for decoding quantum channels, compressing quantum information, entanglement distillation, state transfer, etc. all involve an Uhlmann transformation!

Why care about Uhlmann transformations?

They appear in many fields:

1. Optimal protocols for decoding quantum channels, compressing quantum information, entanglement distillation, state transfer, etc. all involve an Uhlmann transformation!
2. The hardness of Uhlmann transformations (for efficiently preparable states) is a necessary condition for cryptography to exist!

Why care about Uhlmann transformations?

They appear in many fields:

1. Optimal protocols for decoding quantum channels, compressing quantum information, entanglement distillation, state transfer, etc. all involve an Uhlmann transformation!
2. The hardness of Uhlmann transformations (for efficiently preparable states) is a necessary condition for cryptography to exist! [Yan22]
3. They characterize interesting complexity classes like the class of zero-knowledge provable unitaries, and the class of unitaries that can be implemented with the help of interaction with an all-powerful prover. [BEM⁺23]

Why care about Uhlmann transformations?

They appear in many fields:

1. Optimal protocols for decoding quantum channels, compressing quantum information, entanglement distillation, state transfer, etc. all involve an Uhlmann transformation!
2. The hardness of Uhlmann transformations (for efficiently preparable states) is a necessary condition for cryptography to exist! [Yan22]
3. They characterize interesting complexity classes like the class of zero-knowledge provable unitaries, and the class of unitaries that can be implemented with the help of interaction with an all-powerful prover. [BEM⁺23]
4. Studying them will have interesting connections to math too! (Foreshadowing)

The canonical Uhlmann transformation

In general, there could be many Uhlmann transformations for a pair of states (e.g., that differ off of the support of $|C\rangle$). But there is a way to define a canonical isometry:

$$W = \text{sgn} \left(\text{Tr}_A (|D\rangle\langle C|) \right)$$

The canonical Uhlmann transformation

In general, there could be many Uhlmann transformations for a pair of states (e.g., that differ off of the support of $|C\rangle$). But there is a way to define a canonical isometry:

$$W = \text{sgn} \left(\text{Tr}_A (|D\rangle\langle C|) \right)$$

It is known that two different Uhlmann transformations of the same pair of states must look the same on the support of W ! [BEM⁺23]

Approximate Uhlmann transforms

Say you found a unitary U such that:

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

Approximate Uhlmann transforms

Say you found a unitary U such that:

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

Can you say that this U is “close” to an Uhlmann transformation in some sense?

Approximate Uhlmann transforms

Say you found a unitary U such that:

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

Can you say that this U is “close” to an Uhlmann transformation in some sense?

Our answer: Yes, up to some parameters!

Rigidity of Uhlmann transformations

Theorem: Let $|C\rangle_{AB}, |D\rangle_{AB}$ be two quantum states with reduced on A ρ, σ . Then for all unitaries U such that

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

There is a function $\delta(\cdot)$ such that

$$\left\| \text{id} \otimes (W - U)W^*W | C \rangle \right\|^2 \leq \delta(\epsilon).$$

Rigidity of Uhlmann transformations

Theorem: Let $|C\rangle_{AB}, |D\rangle_{AB}$ be two quantum states with reduced on A ρ, σ . Then for all unitaries U such that

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

There is a function $\delta(\cdot)$ such that

$$\left\| \text{id} \otimes (W - U)W^*W | C \rangle \right\|^2 \leq \delta(\epsilon).$$

Here, $\delta(\epsilon) = \left(\frac{2\kappa}{\eta}\right) \cdot \epsilon$, depends on the following properties of the states $|C\rangle, |D\rangle$:

$$\kappa = \left\| \rho^{-1/2} \cdot \text{Image}(\rho^{1/2} \sigma \rho^{1/2}) \cdot \rho^{1/2} \right\|_{\text{op}}^2 \quad \text{and} \quad \eta = \lambda_{\min}(\rho^{-1} \# \sigma).$$

Rigidity of Uhlmann transformations

Theorem: Let $|C\rangle_{AB}, |D\rangle_{AB}$ be two quantum states with reduced on A ρ, σ . Then for all unitaries U such that

$$\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon,$$

There is a function $\delta(\cdot)$ such that

$$\left\| \text{id} \otimes (W - U)W^*W | C \rangle \right\|^2 \leq \delta(\epsilon).$$

Here, $\delta(\epsilon) = \left(\frac{2\kappa}{\eta}\right) \cdot \epsilon$, depends on the following properties of the states $|C\rangle, |D\rangle$:

$$\kappa = \left\| \rho^{-1/2} \cdot \text{Image}(\rho^{1/2} \sigma \rho^{1/2}) \cdot \rho^{1/2} \right\|_{\text{op}}^2 \quad \text{and} \quad \eta = \lambda_{\min}(\rho^{-1} \# \sigma).$$

Matrix geometric mean: $A \# B = A^{1/2} \cdot \overbrace{(A^{-1/2} B A^{-1/2})^{1/2}}^{\text{Matrix geometric mean}} \cdot A^{1/2}$

Proof Sketch

Let's think about the theorem statement as a maximization problem:

Maximize over U : $\| \text{id} \otimes (W - U)W^*W|C\rangle \| ^2$.

Subject to: $\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon$,

$U^*U = \text{id}$.

Proof Sketch

Let's think about the theorem statement as a maximization problem:

Maximize over U : $\| \text{id} \otimes (W - U)W^*W|C\rangle \|^2$.

Subject to: $\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon$,

$U^*U = \text{id}$.

Very high level game plan: Use semi-definite programming duality to upper bound this!

Proof Sketch

Let's think about the theorem statement as a maximization problem:

Maximize over U : $\| \text{id} \otimes (W - U)W^*W|C\rangle \| ^2$.

Subject to: $\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon$,

$U^*U \leq \text{id}$.

Very high level game plan: Use semi-definite programming duality to upper bound this!

Proof Sketch

Let's think about the theorem statement as a maximization problem:

Maximize over U : $\| \text{id} \otimes (W - U)W^*W|C\rangle \| ^2$.

Subject to: $\langle D | \text{id} \otimes U | C \rangle = F(\rho, \sigma) - \epsilon$,

$U^*U = \text{id}$.

Very high level game plan: Use semi-definite programming duality to upper bound this!

Proof Sketch

For our constraint, we can write it in a more standard form as:

$$\langle D | \text{id} \otimes U | C \rangle = \text{Tr} \left(\sqrt{\sigma} U \sqrt{\rho} \right) = \text{Tr} \left(U \sqrt{\rho} \sqrt{\sigma} \right)$$

$$A = \sqrt{\sigma} \sqrt{\rho}$$

Since we want this to be a real number, we can write this constraint as:

$$\frac{1}{2} \left(\text{Tr}(UA^*) + \text{Tr}(U^*A) \right) .$$

Proof Sketch

Let's think about the theorem statement as a maximization problem:

$$\text{Maximize over } U: \left\| \text{id} \otimes (W - U)W^*W | C \rangle \right\|^2.$$

$$\text{Subject to: } \frac{1}{2} (\text{Tr}(UA^*) + \text{Tr}(U^*A)) = F(\rho, \sigma) - \epsilon,$$

$$U^*U = \text{id}.$$

Very high level game plan: Use semi-definite programming duality to upper bound this!

Proof Sketch

For the objective, we can expand it out as:

$$\begin{aligned} \left\| \text{id} \otimes (W - U)W^*W | C \right\rangle \right\|^2 &= \langle C | \text{id} \otimes W^*W | C \rangle \\ &\quad + \langle C | \text{id} \otimes (W^*WU^*UW^*W) | C \rangle \\ &\quad + 2\text{Re} \langle C | \text{id} \otimes (W^*WW^*UW^*W) | C \rangle \\ &\leq 2\text{Tr}(W^*W\rho) - \left(\text{Tr}(UW^*W\rho W^*) + \text{Tr}(W\rho W^*WU) \right) . \end{aligned}$$

Proof Sketch

For the objective, we can expand it out as:

$$\begin{aligned} \left\| \text{id} \otimes (W - U)W^*W | C \right\rangle \right\|^2 &= \langle C | \text{id} \otimes W^*W | C \rangle \\ &\quad + \langle C | \text{id} \otimes (W^*WU^*UW^*W) | C \rangle \\ &\quad + 2\text{Re} \langle C | \text{id} \otimes (W^*WW^*UW^*W) | C \rangle \\ &\leq 2\text{Tr}(W^*W\rho) - \left(\text{Tr}(UW^*W\rho W^*) + \text{Tr}(W\rho W^*WU) \right) . \end{aligned}$$

We will use the second term as the new objective function (since the first term does not depend on U).

Proof Sketch

Let's think about the theorem statement as a maximization problem:

$$\text{Maximize over } U: - \left(\text{Tr}(UW^*W\rho W^*) + \text{Tr}(W\rho W^*WU) \right).$$

$$\text{Subject to: } \frac{1}{2} \left(\text{Tr}(UA^*) + \text{Tr}(U^*A) \right) = F(\rho, \sigma) - \epsilon,$$

$$\begin{pmatrix} \text{id} & U \\ U^* & \text{id} \end{pmatrix} \geq 0.$$

Now, this can be transformed into a standard form semidefinite program.

Proof Sketch

The dual of the SDP is:

$$\text{Minimize over } Y_1, Y_2, \alpha: \text{Tr}(Y_1) + \text{Tr}(Y_2) + \alpha (\mathcal{F}(\rho, \sigma) - \epsilon)$$

Subject to:
$$\begin{pmatrix} Y_1 & \frac{1}{2}\alpha A \\ \frac{1}{2}\alpha A^* & Y_2 \end{pmatrix} \geq \frac{1}{2} \begin{pmatrix} & -W\rho W^*W \\ -W^*W\rho W & \end{pmatrix}$$

$$Y = \begin{pmatrix} Y_1 & & \\ & Y_2 & \\ & & \alpha \end{pmatrix} \text{ Hermitian}$$

Proof Sketch

The dual of the SDP is:

$$\text{Minimize over } Y_1, Y_2, \alpha: \text{Tr}(Y_1) + \text{Tr}(Y_2) + \alpha (\mathcal{F}(\rho, \sigma) - \epsilon)$$

Subject to:
$$\begin{pmatrix} Y_1 & \frac{1}{2}\alpha A \\ \frac{1}{2}\alpha A^* & Y_2 \end{pmatrix} \geq \frac{1}{2} \begin{pmatrix} & -W\rho W^*W \\ -W^*W\rho W & \end{pmatrix}$$

$$Y = \begin{pmatrix} Y_1 & & \\ & Y_2 & \\ & & \alpha \end{pmatrix} \text{ Hermitian}$$

If we find any feasible solution to this, we get an upper bound on the rigidity.

Proof Sketch

We are going to identify a nice matrix/choice of α to plug in. Define the following:

$$\alpha = -\kappa/\eta$$

$$T = \frac{1}{2} (\alpha A^* + P\rho W^*)$$

Then we plug in the following for Y_1 , Y_2 and we get the answer we want.

$$Y_1 = \sqrt{T^* T}$$

$$Y_2 = T \left(\sqrt{T^* T} \right)^{-1} T^*$$

Dependence on parameters κ, η

Is the dependence on these numbers κ and η necessary? Yes, to some extent

Dependence on parameters κ, η

Is the dependence on these numbers κ and η necessary? Yes, to some extent

Theorem: For every η , there is a pair of states whose matrix geometric mean has smallest eigenvalue η , and there is a transformation that saturates the bound, i.e.

$$\|\text{id} \otimes (W - U)W^*W|C\rangle\|^2 \geq 2\epsilon/\eta$$

Dependence on parameters κ, η

Is the dependence on these numbers κ and η necessary? Yes, to some extent

Theorem: For every η , there is a pair of states whose matrix geometric mean has smallest eigenvalue η , and there is a transformation that saturates the bound, i.e.

$$\|\text{id} \otimes (W - U)W^*W|C\rangle\|^2 \geq 2\epsilon/\eta$$

Theorem: For every $\kappa \geq 1$ and all ϵ , there is a pair of states with $\eta \geq 1$ and $\kappa = \left\| \rho^{-1/2} \cdot \text{Image}(\rho^{1/2} \sigma \rho^{1/2}) \cdot \rho^{1/2} \right\|_{\text{op}}^2$ such that

$$\|\text{id} \otimes (W - U)W^*W|C\rangle\|^2 \geq \kappa\epsilon^2$$

Uhlmann transformations for math

Our rigidity theorem seems to be a very general form of rigidity, it implies other well known stability theorems. Let's consider one such example!

Uhlmann transformations for math

Our rigidity theorem seems to be a very general form of rigidity, it implies other well known stability theorems. Let's consider one such example!

A representation of a group is a mapping from a group G to unitaries on some vector space. The representation satisfies $U_g U_h = U_{gh}$.

Uhlmann transformations for math

Our rigidity theorem seems to be a very general form of rigidity, it implies other well known stability theorems. Let's consider one such example!

A representation of a group is a mapping from a group G to unitaries on some vector space. The representation satisfies $U_g U_h = U_{gh}$.

An approximate representation is a collection of unitaries such that

$$\frac{1}{d} \mathbb{E}_{g,h} \left[\|U_g U_h - U_{gh}\|_1^2 \right] \leq \epsilon$$

Uhlmann transformations for math

Given an ϵ -approximate representation, how close is it to a real representation? Let's consider the following pair of states:

$$|C\rangle = \frac{1}{|G|} \sum_{g,h \in G} \left(\text{id} \otimes U_g \right) |\text{EPR}\rangle_{AB_1} |g\rangle_{B_2} |h\rangle_{B_3},$$

$$|D\rangle = \frac{1}{|G|} \sum_{g,h \in G} \left(\text{id} \otimes U_{hg} \right) |\text{EPR}\rangle_{AB_1} |g\rangle_{B_2} |h\rangle_{B_3}.$$

Let's consider the Uhlmann transformations that act on the B register.

Uhlmann transformations for math

$$|C\rangle = \frac{1}{|G|} \sum_{g,h \in G} \left(\text{id} \otimes U_g \right) |\text{EPR}\rangle |g\rangle |h\rangle,$$

$$|D\rangle = \frac{1}{|G|} \sum_{g,h \in G} \left(\text{id} \otimes U_{hg} \right) |\text{EPR}\rangle |g\rangle |h\rangle.$$

The canonical Uhlmann transformation is:

$$W = \sum_{g,h} \left(U_{hg} U_g^* \right)_{B_1} \otimes |g, h\rangle \langle g, h|_{B_2 B_3}.$$

An approximate one is:

$$U = \sum_h \left(U_h \right)_{B_1} \otimes |h\rangle \langle h|_{B_3}.$$

Uhlmann transformations for math

Applying the rigidity theorem to these two unitaries:

$$W = \sum_{g,h} \left(U_{hg} U_g^* \right)_{B_1} \otimes |g, h\rangle\langle g, h|_{B_2 B_3}, \text{ and } U = \sum_h \left(U_h \right)_{B_1} \otimes |h\rangle\langle h|_{B_3}$$

Gives us the following: There exists an isometry V and exact representation R

$$\frac{1}{d} \mathbb{E}_g \left[\| U_g - V^* R(g) V \|_1^2 \right] \leq \epsilon$$

Next steps?

We proved a rigidity theorem for Uhlmann transformations, but open questions still remain.

1. Can we relate other notions of stability to Uhlmann transformations? For example, is CHSH rigidity a consequence of the rigidity of the Uhlmann transformation for some pair of states? What about general algebra's and non-local games?
2. There is a way to round states to nearby states so that η (the minimum eigenvalue of the matrix geometric mean) is well behaved, does the same exist for κ ?

Next steps?

We proved a rigidity theorem for Uhlmann transformations, but open questions still remain.

1. Can we relate other notions of stability to Uhlmann transformations? For example, is CHSH rigidity a consequence of the rigidity of the Uhlmann transformation for some pair of states? What about general algebra's and non-local games?
2. There is a way to round states to nearby states so that η (the minimum eigenvalue of the matrix geometric mean) is well behaved, does the same exist for κ ?

Thanks for listening!