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Given two states  and , with reduced states on the A register  and , the 
following holds: 

  

In other words, the best you can map from  to , only touching the B register, is 
given by the fidelity of the reduced states on the A register. 

We call such a unitary  an Uhlmann transformation.
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F(ρ, σ) = max
U

⟨D | id ⊗ U |C⟩
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They appear in many fields: 

1. Optimal protocols for decoding quantum channels, compressing quantum 
information, entanglement distillation, state transfer, etc. all involve an Uhlmann 
transformation! 

2. The hardness of Uhlmann transformations (for efficiently preparable states) is a 
necessary condition for cryptography to exist! [Yan22] 

3. They characterize interesting complexity classes like the class of zero-knowledge 
provable unitaries, and the class of unitaries that can be implemented with the help of 
interaction with an all-powerful prover. [BEM+23] 

4. Studying them will have interesting connections to math too! (Foreshadowing)
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The canonical Uhlmann transformation
In general, there could be many Uhlmann transformations for a pair of states (e.g., that 
differ off of the support of .  But there is a way to define a canonical isometry: 

 

It is known that two different Uhlmann transformations of the same pair of states must 
look the same on the support of W! [BEM+23]

|C⟩

W = sgn (Tr𝖠 ( |D⟩⟨C |))
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Approximate Uhlmann transforms
Say you found a unitary  such that: 

 

Can you say that this  is “close” to an Uhlmann transformation in some sense? 

Our answer: Yes, up to some parameters! 

U

⟨D | id ⊗ U |C⟩ = F(ρ, σ) − ϵ ,

U



Rigidity of Uhlmann transformations
Theorem: Let  be two quantum states with reduced on  .  Then for all 
unitaries  such that 
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There is a function  such that 

 

Here, , depends on the following properties of the states : 

 

|C⟩𝖠𝖡, |D⟩𝖠𝖡 𝖠 ρ, σ
U

⟨D | id ⊗ U |C⟩ = F(ρ, σ) − ϵ ,

δ( ⋅ )

id ⊗ (W − U)W*W |C⟩
2

≤ δ(ϵ) .

δ(ϵ) = ( 2κ
η ) ⋅ ϵ |C⟩, |D⟩

κ = ρ−1/2 ⋅ Image(ρ1/2σρ1/2) ⋅ ρ1/2
2

op
and η = λmin(ρ−1#σ) .

Matrix geometric mean: A#B = A1/2 ⋅ (A−1/2BA−1/2)1/2 ⋅ A1/2
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Proof Sketch
For our constraint, we can write it in a more standard form as: 
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Proof Sketch
For the objective, we can expand it out as:  
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Proof Sketch
For the objective, we can expand it out as:  

 

We will use the second term as the new objective function (since the first term does not 
depend on U).

id ⊗ (W − U)W*W |C⟩
2

= ⟨C | id ⊗ W*W |C⟩

+⟨C | id ⊗ (W*WU*UW*W) |C⟩
+2Re⟨C | id ⊗ (W*WW*UW*W) |C⟩

≤ 2Tr(W*Wρ) − (Tr(UW*WρW*) + Tr(WρW*WU)) .



Proof Sketch
Let’s think about the theorem statement as a maximization problem: 

Maximize over U:  

Subject to:  

 

Now, this can be transformed into a standard form semidefinite program.

−(Tr(UW*WρW*) + Tr(WρW*WU)) .

1
2 (Tr (UA*) + Tr(U*A)) = F(ρ, σ) − ϵ ,

( id U
U* id) ≥ 0 .



Proof Sketch
The dual of the SDP is: 

Minimize over :  

Subject to:  
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1
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Y =

Y1
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α
Hermitian



Proof Sketch
The dual of the SDP is: 

Minimize over :  

Subject to:  

 

If we find any feasible solution to this, we get an upper bound on the rigidity.

Y1, Y2, α Tr(Y1) + Tr(Y2) + α (F(ρ, σ) − ϵ)
Y1

1
2 αA

1
2 αA* Y2

≥
1
2 ( −WρW*W

−W*WρW )
Y =

Y1
Y2

α
Hermitian



Proof Sketch
We are going to identify a nice matrix/choice of  to plug in.  Define the following: 

 

 

Then we plug in the following for  and we get the answer we want. 

 
 

α

α = − κ/η

T =
1
2 (αA* + PρW*)

Y1, Y2

Y1 = T*T

Y2 = T ( T*T)
−1

T*
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Dependence on parameters κ, η
Is the dependence on these numbers  and  necessary? Yes, to some extent 

Theorem: For every , there is a pair of states whose matrix geometric mean has smallest 
eigenvalue , and there is a transformation that saturates the bound, i.e. 

 

Theorem: For every  and all , there is a pair of states with  and 

 such that  

κ η

η
η

∥id ⊗ (W − U)W*W |C⟩∥2 ≥ 2ϵ/η

κ ≥ 1 ϵ η ≥ 1
κ = ρ−1/2 ⋅ Image(ρ1/2σρ1/2) ⋅ ρ1/2

2

op

∥id ⊗ (W − U)W*W |C⟩∥2 ≥ κϵ2
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Uhlmann transformations for math
Our rigidity theorem seems to be a very general form of rigidity, it implies other well 
known stability theorems. Let’s consider one such example! 

A representation of a group is a mapping from a group  to unitaries on some vector 
space.  The representation satisfies . 

An approximate representation is a collection of unitaries such that 

G
UgUh = Ugh

1
d

𝔼g,h [∥UgUh − Ugh∥2
1] ≤ ϵ



Uhlmann transformations for math
Given an -approximate representation, how close is it to a real representation? Let’s 
consider the following pair of states: 

 

 

Let’s consider the Uhlmann transformations that act on the  register.

ϵ

|C⟩ =
1

|G | ∑
g,h∈G

(id ⊗ Ug) |EPR⟩𝖠𝖡1
|g⟩𝖡2

|h⟩𝖡3
,

|D⟩ =
1

|G | ∑
g,h∈G

(id ⊗ Uhg) |EPR⟩𝖠𝖡1
|g⟩𝖡2

|h⟩𝖡3
.

𝖡



Uhlmann transformations for math
 

 

The canonical Uhlmann transformation is: 

 

An approximate one is: 

|C⟩ =
1

|G | ∑
g,h∈G

(id ⊗ Ug) |EPR⟩ |g⟩ |h⟩ ,

|D⟩ =
1

|G | ∑
g,h∈G

(id ⊗ Uhg) |EPR⟩ |g⟩ |h⟩ .

W = ∑
g,h

(UhgU*g )𝖡1

⊗ |g, h⟩⟨g, h |𝖡2𝖡3
.

U = ∑
h

(Uh)𝖡1
⊗ |h⟩⟨h |𝖡3

.



Uhlmann transformations for math
Applying the rigidity theorem to these two unitaries: 

  and   

Gives us the following: There exists an isometry V and exact representation  

W = ∑
g,h

(UhgU*g )𝖡1

⊗ |g, h⟩⟨g, h |𝖡2𝖡3
, U = ∑

h
(Uh)𝖡1

⊗ |h⟩⟨h |𝖡3

R

1
d

𝔼g [∥Ug − V*R(g)V∥2
1] ≤ ϵ



Next steps?
We proved a rigidity theorem for Uhlmann transformations, but open questions still 
remain. 

1. Can we relate other notions of stability to Uhlmann transformations? For example, is 
CHSH rigidity a consequence of the rigidity of the Uhlmann transformation for some 
pair of states? What about general algebra’s and non-local games? 

2. There is a way to round states to nearby states so that  (the minimum eigenvalue of 
the matrix geometric mean) is well behaved, does the same exist for ? 

η
κ



Next steps?
We proved a rigidity theorem for Uhlmann transformations, but open questions still 
remain. 

1. Can we relate other notions of stability to Uhlmann transformations? For example, is 
CHSH rigidity a consequence of the rigidity of the Uhlmann transformation for some 
pair of states? What about general algebra’s and non-local games? 

2. There is a way to round states to nearby states so that  (the minimum eigenvalue of 
the matrix geometric mean) is well behaved, does the same exist for ? 

Thanks for listening!

η
κ


