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One-way state generators

* (Correctness) There is an efficient algorithm Ver(k, p) such that

l?{r[T « Ver(k,pr)] = 1 —negl(1).

* (Security) For all efficient adversaries A,

P;(r [T « Ver(k',pi)| k' < A(p,?t(/l)) ] < negl(A).
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Quantum bit commitments
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Quantum bit commitments

* (Hiding) For all efficient adversaries A,
Pr [T « A (pg)))] — Pr [T — A(pél))] < negl(A).

* (Binding) For all (possibly inefficient) adversaries A,

F (A (pgo)) : pﬁl)) < negl(A).
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EFI pairs

The states (p L(;,O), p él)) used in a canonical quantum commitment are
also an EFI pair:

* Efficient: The committer can generate them in polynomial time.

* Statistically Far: Binding gives us that the two states have high trace
distance.

* Computationally Indistinguishable: Hiding guarantees that no
efficient adversary can distinguish them.




The common Haar random state model

In the common Haar random state model (CHRS) [CCS’24, AGL’24],
there are a collection of states {|1),)}pen that are sampled uniformly at
random from the Haar measure, and all parties get sample access to the
states.
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Our main result

Relative to a common Haar random state and a unitaryPSPACE oracle,
one-way state generators do not exist.



Our main result

Relative to a common Haar random state and a unitaryPSPACE oracle,
one-way state generators do not exist.

Since quantum bit commitments exist in the common Haar random
state model [CCS'24, AGL'24 ], this separates quantum bit
commitments and one-way state generators.
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Ruling out OWSG in the CHRS

. . A . .
Given copies p,(? and many copies of the Haar random state, consider

the following algorithm that learns k:

For i from 0 to 2%:

* Sample a “random” k'.

e Run Ver!¥e3(k’, p,.), A many times.
e If all accept, halt and output k'

e Otherwise, uncompute every Ver(k', p;. ), and continue.
p Iy Pk
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Ruling out OWSG in the CHRS

From the gentle random measurementlemma [WB23], this algorithm
outputs a k' such that k" = k with constant probability.

Using a pseudo-random generator (against PSPACE) and deferred
measurement, the entire algorithm can be described by a deterministic
PSPACE quantum circuit.
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Interpretations of the result

[t seems like quantum bit commitments (and equivalent primitives) are
a minimal world for quantum cryptography (at least, mathematically).
How should we interpret this world?

Un-entangled versus entangled?
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