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To me, the outcome would be surprising either way!

Otherwise, there must 
be something 
interesting you could 
verify about a quantum 
state that you can only 
learn from having a 
copy of the state!

If , then 
anything you could 
verify about a quantum 
state could be written 
down as a classical 
string!
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A quantum oracle separation [AK’06]

Recall: A quantum state on -qubits is a vector of  complex numbers  
 there are roughly  quantum states on -qubits.   

Concentration: Any collection of  states will fail to be close to a random state!
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A quantum oracle separation [AK’06]

Claim: Oracle that accepts a random state (or nothing) separates  from . 

 A  prover can send a copy of . 

 Any  verifier will only be able to check  different quantum states. For 
almost all random states, it won’t be able to check.  

𝖰𝖬𝖠 𝖰𝖢𝖬𝖠

→ 𝖰𝖬𝖠 |ψ⟩

→ 𝖰𝖢𝖬𝖠 2poly(n)
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A classical oracle separation?
The AK’06 oracle is, in some ways, too powerful: Even if the adversary trusts the prover, 
they can’t find an input to the oracle for which it isn’t identity! 

But for any “classicalization” of this oracle, classical witness can now actually say 
something about the oracle, so the problem gets a lot more challenging! 
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Aaronson & Kuperberg ’06: 
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Each 𝒪n = id − 2 |ψn⟩⟨ψn |

Lutomirski ’11: Proposed 
the expander mixing 
problem as a candidate 
classical oracle separation.

Fefferman & Kimmel ’15: 
In-place permutation oracle. 
Problem corresponds to set 
size estimation.

Natarajan & Nirkhe ’22: Distribution 
testing oracle. Problem corresponds to 
size estimation of an expander graph. 

Li, Liu, Pelecanos, Yamakawa ’23: 
Separation assuming only classical 
queries. Based on “Verifiable Quantum 
Advantage without Structure”. 

Ben-David & Kundu ’24: Bounded 
adaptivity, based on “Verifiable 
Quantum Advantage without 
Structure”. 

Liu, Mutreja, Yuen ’25: Aaronson-
Ambainis-like conjecture implies QMA 
QCMA separation. Problem 
corresponds to size estimation of an 
expander graph.

‘02 ‘25
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Why is this problem so hard?
To me, the problem has been “stuck” in between two 
competing desires for a while. 

• In any separation, the  must do more than 
just measure their quantum state  

 The oracle should have some hidden global 
structure that is “visible” to a quantum proof.     

• But, quantum lower bound techniques usually 
take advantage of the randomness of the oracle.  

 Need a new technique for analyzing some kind 
of structured classical oracles.   

Our paper bridges the gap, taking the less structured 
oracle of Zhandry’24, and introducing new analysis 
to understand Fourier-related sets.

𝖰𝖬𝖠

→
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We prove that there is a classical oracle 
relative to which 𝖰𝖬𝖠 ≠ 𝖰𝖢𝖬𝖠
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Computing in two bases
Quantum states can be viewed from one of two bases:  

Rough intuition: The “size” of the shadows in the standard and Hadamard basis should 
multiply to a fixed number for all -qubit states ( ).n ∼ 2n
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The spectral Forrelation problem
The spectral Forrelation problem is a problem about pairs of sets , which we treat 
as oracles through the set membership functions.  ~positions, and ~momentums.
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We say that two sets  are -spectrally Forrelated if there is a state  such that  (S, U) α |ψ⟩
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The spectral Forrelation problem
Given oracle access to two sets  (via set membership functions), determine if there 
is a state  such that   is large ( ) or small ( ), 
promised that one of the two is the case.  

(S, U)
|ψ⟩ ∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2 ≥ 59/100 ≤ 57/100
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Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state : 

• Use  oracle to measure the POVM 
, reject if the outcome is . 

• Apply  to the resulting state. 

• Use  oracle to measure the POVM 
, reject it the outcome is . 

• Accept.

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

H⊗n

U
{ΠU, id − ΠU} id − ΠU

Claim: This verifier accepts with probability: . 
Sequential amplification can bring this to the standard  or .

∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2

2/3 1/3
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Classicalizing a random quantum state
• We will first sample  many random 

elements .  Let  be the uniform 
superposition over the points. 

• We take  to be the heavy points of 
, the Hadamard transform of . 

We call this distribution over oracles the 
 distribution. 

Claim (Informal): For , the 
following holds: 

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

𝖲𝗍𝗋𝗈𝗇𝗀

(S, U) ∼ 𝖲𝗍𝗋𝗈𝗇𝗀

𝔼U [ΠS ⋅ H⊗n ⋅ ΠU ⋅ H⊗n ⋅ ΠS] ≈
1
10

|S⟩⟨S | +
1
2

id
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Strong yes instances
A pair  is a strong yes instance if: 

•  is a yes instance of spectral Forrelation (i.e., 
 spectrally Forrelated). 

• For all  with ,  is a no instance 
of spectral Forrelation (i.e.,  spectrally 
Forrelated).

(S, U)

(S, U)
≥ 59/100

Δ ⊂ S |Δ | ≤ ℓ/100 (Δ, U)
≤ 57/100
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Strong yes instances can be sampled from
Any quantum query algorithm that distinguishes between  and  must 
query a point in  pretty often (  chance per query ), since otherwise the action of 
the oracles is identical.   

Therefore, measuring a random query of the algorithm will yield a point in  with good 
probability, .

(S, U) ({x1}, U)
S ≥ 1/3t

S
x2



Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until  points have been 
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Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until  points have been 
sampled!  This is the part that uses the fact that the witness is classical. 

Given a  algorithm, we can guess the classical witness and be correct with 
probability .  

ℓ/100

𝖰𝖢𝖬𝖠
2−q
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Why should spectral Forrelation be hard?
•  is sparse  guessing a single point of  seems like it should be hard.  S → S

A quantum witness helps you verify 
spectral Forrelation, but only gives you 
a single point from .  S

A classical witness that help you verify 
spectral Forrelation can be re-used, 
must actually specify  points from 

, somehow! 
ℓ/10

S
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Main theorems
Theorem 1: For all , and all quantum query algorithms making  queries to 
a set membership oracle for , the probability, over , that the algorithm outputs  
distinct points from  is at most  

. 

Theorem 2: If there exists a  algorithm, making  queries to  and 
taking a witness of length , then for all , there is a query algorithm 
making  queries to  that outputs  distinct points from  with probability 

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ ( poly(v, T)
poly(2n) )

v

𝖰𝖢𝖬𝖠 t = t(n) (S, U)
q = q(n) 0 < v < ℓ/100

vt U v S

≥ 2−q ( 1
36t2 )

v
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Takeaways
• Quantum proofs are really powerful! 

 That power is what we think makes them not reusable! 
 Our proof finds a task (sampling) that should be really hard, and shows that a 

reusable proof would be too good to be true.   

• Small structural changes can have a huge impact! 
 Our analysis (the bosonic compressed oracle) is possible because we allow  to be a 

multi-set with independent elements instead of a set with exactly  elements. 
 This removal of structure allowed us to understand queries to the Fourier transform 

of an oracle way better than we could before! 

• Much more work is needed! 
 Understanding oracles with structure seems to require an understanding that 

structure, seem to be annoying to deal with using general methods.   
 To understand other oracles (expander mixing problem, Yamakawa-Zhandry, etc.), 

we will need more specific tools, or a big leap in understanding of quantum 
algorithms.

→
→

→ S
ℓ

→

→

→
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Open questions
• Can we find new constructions/security proofs for quantum money?  

 Our ideas lie in the intersection of ideas used for quantum money (subset states  
subspace states, Fourier transform of   Fourier transform for group actions). 

 We also prove a separation between  and , feels like we should 
be able to say something about quantum money, but what? 

• Can we use our oracle/techniques to solve other problems in query complexity? 
  versus ? 
  search-to-decision? 

• Is there a connection to the Aaronson-Ambainis conjecture? 
 Both Liu-Mutreja-Yuen’24 and Zhandry’24 showed that there is a connection 

between  versus  and pseudorandomness against quantum algorithms. 
 Our proof didn’t say anything about this, but could you use our techniques? 
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Thanks for listening!


