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A quantum oracle separation [ax6]

Recall: A quantum state on n-qubits is a vector of 2" complex numbers
— there are roughly 2" quantum states on n-qubits.
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Recall: A quantum state on n-qubits is a vector of 2" complex numbers
— there are roughly 2° quantum states on n-qubits.
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Concentration: Any collection of 2P°Y?" states will fail to be close to a random state!



A quantum oracle separation [ax6]

Claim: Oracle that accepts a random state (or nothing) separates QMA from QCMA.
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A quantum oracle separation [ax6]

Claim: Oracle that accepts a random state (or nothing) separates QMA from QCMA.

— A QMA prover can send a copy of |y).
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A quantum oracle separation [ax6]

Claim: Oracle that accepts a random state (or nothing) separates QMA from QCMA.

— A QMA prover can send a copy of |y).

— Any QCMA verifier will only be able to check 2P°Y™ different quantum states. For
almost all random states, it won’t be able to check.
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A classical oracle separation?

The AK’06 oracle is, in some ways, too powerful: Even if the adversary trusts the prover,
they can’t find an input to the oracle for which it isn’t identity!
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A classical oracle separation?

The AK’06 oracle is, in some ways, too powerful: Even if the adversary trusts the prover,
they can’t find an input to the oracle for which it isn’t identity!
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But for any “classicalization” of this oracle, classical witness can now actually say
something about the oracle, so the problem gets a lot more challenging!
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History of the QMA versus QCMA problem

First proposed in 02 by
Aharanov and Naveh.

Aaronson & Kuperberg ’06:
Quantum oracle separation.

‘02

Lutomirski ’11: Proposed
the expander mixing
problem as a candidate
classical oracle separation.

Fefferman & Kimmel ’15:
In-place permutation oracle.
Problem corresponds to set
size estimation.

Natarajan & Nirkhe ’22: Distribution
testing oracle. Problem corresponds to
size estimation of an expander graph.

Li, Liu, Pelecanos, Yamakawa ’23:
Separation assuming only classical
queries. Based on “Verifiable Quantum
Advantage without Structure”.
¢
25

Ben-David & Kundu *24: Bounded
adaptivity, based on “Verifiable
Quantum Advantage without
Structure”.

Liu, Mutreja, Yuen *25: Aaronson-
Ambainis-like conjecture implies QMA
QCMA separation. Problem
corresponds to size estimation of an

expander graph.
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of structured classical oracles.

Our paper bridges the gap, taking the less structured
oracle of Zhandry’24, and introducing new analysis
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We prove that there is a classical oracle
relative to which QMA # QCMA
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Computing in two bases

Quantum states can be viewed from one of two bases:

Position (Standard) Momentum (Hadamard)

Rough intuition: The “size” of the shadows in the standard and Hadamard basis should
multiply to a fixed number for all n-qubit states ( ~ 2").



The spectral Forrelation problem

The spectral Forrelation problem is a problem about pairs of sets (S, U), which we treat
as oracles through the set membership functions. S~positions, and U~momentums.
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The spectral Forrelation problem

We say that two sets (S, U) are a-spectrally Forrelated if there is a state |y) such that
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The spectral Forrelation problem

Given oracle access to two sets (S, U) (via set membership functions), determine if there
is a state |y) such that ||IT,, - H®" - I | w)||* is large ( > 59/100) or small ( < 57/100),
promised that one of the two is the case.
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Spectral Forrelation is in QMA

Given a copy of a state |y):

o Use S oracle to measure the POVM
{Ilg,1d — I}, reject if the outcome is 1d — I1;.

» Apply H®" to the resulting state.

o Use U oracle to measure the POVM
{IT;;,1d — I1,}, reject it the outcome is 1d — I1;,.

» Accept.

Claim: This verifier accepts with probability:||T1,, - H®" - I1¢ | w)||*.
Sequential amplification can bring this to the standard 2/3 or 1/3.
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Classicalizing a random quantum state

» We will first sample Z = 2"!Y many random
elements s, ...,s,. Let |S) be the uniform
superposition over the points.

» We take U to be the heavy points of
H®"|S), the Hadamard transform of |S).

We call this distribution over oracles the
Strong distribution.

Claim (Informal): For (S, U) ~ Strong, the
following holds:
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» (S, U) 1s a yes instance of spectral Forrelation (i.e.,
> 59/100 spectrally Forrelated).




Strong yes instances
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A pair (8, U) is a strong yes instance if:

» (S, U) 1s a yes instance of spectral Forrelation (i.e.,
> 59/100 spectrally Forrelated).

« Forall A c Swith |A| < £/100, (A, U) i1s a no instance
of spectral Forrelation (i.e., < 57/100 spectrally
Forrelated).



Strong yes instances can be sampled from

Any quantum query algorithm that distinguishes between (S, U) and (&, U) must query a
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Strong yes instances can be sampled from

Any quantum query algorithm that distinguishes between (S, U) and (&, U) must query a
point in § pretty often ( > 1/3¢ chance per query ), since otherwise the action of the
oracles is identical.

Therefore, measuring a random query of the algorithm will yield a point in § with good
probability, x;.
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Strong yes instances can be sampled from

Any quantum query algorithm that distinguishes between (S, U) and ({x, }, U) must
query a point in S pretty often ( > 1/3¢ chance per query ), since otherwise the action of
the oracles 1s identical.

Therefore, measuring a random query of the algorithm will yield a point in § with good
probability, x,.
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Strong yes instances can be sampled from

Because of the strong yes property, we can keep going until £/100 points have been
sampled! This is the part that uses the fact that the witness is classical.

Given a QCMA algorithm, we can guess the classical witness and be correct with
probability 279,
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Why should spectral Forrelation be hard?

» S is sparse — guessing a single point of S seems like it should be hard.

A quantum witness helps you verify A classical witness that help you verity
spectral Forrelation, but only gives you spectral Forrelation can be re-used,
a single point from . must actually specity £/10 points from

S, somehow!
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Main theorems

Theorem 1: For all v > 0, and all quantum query algorithms making 7' = T(n) queries to
a set membership oracle for U, the probability, over Strong, that the algorithm outputs v

distinct points from § is at most
§ (poly(v, T) )V
~ \ poly2m /-

Theorem 2: If there exists a QCMA algorithm, making ¢ = #(n) queries to (S, U) and

taking a witness of length g = g(n), then for all 0 < v < /100, there is a query algorithm
making vz queries to U that outputs v distinct points from § with probability

> 271 :
3612
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Takeaways

» Quantum proofs are really powerful!
— That power is what we think makes them not reusable!
— Our proof finds a task (sampling) that should be really hard, and shows that a
reusable proof would be too good to be true.

e Small structural changes can have a huge impact!
— Our analysis (the bosonic compressed oracle) is possible because we allow S to be a
multi-set with independent elements instead of a set with exactly £ elements.
— This removal of structure allowed us to understand queries to the Fourier transtorm
of an oracle way better than we could before!

e Much more work is needed!
— Understanding oracles with structure seems to require an understanding that
structure, seem to be annoying to deal with using general methods.
— To understand other oracles (expander mixing problem, Yamakawa-Zhandry, etc.),
we will need more specific tools, or a big leap in understanding of quantum
algorithms.
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— Our ideas lie in the intersection of ideas used for quantum money (subset states <
subspace states, Fourier transtform of § <> Fourier transform for group actions).
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Open questions

» Can we find new constructions/security proofs for quantum money?
— Our ideas lie in the intersection of ideas used for quantum money (subset states <
subspace states, Fourier transtform of § <> Fourier transform for group actions).

— We also prove a separation between UnclonableQMA and QMA, feels like we should
be able to say something about quantum money, but what?

» Can we use our oracle/techniques to solve other problems in query complexity?
— BQP/gpoly versus BQP/poly?
— QMA search-to-decision?

» Is there a connection to the Aaronson-Ambainis conjecture?
— Both Liu-Mutreja-Yuen’'24 and Zhandry’24 showed that there is a connection
between QCMA versus QMA and pseudorandomness against quantum algorithms.
— Our proof didn’t say anything about this, but could you use our techniques?



Thanks for listening!



