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Why care about  versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
The local Hamiltonian problem is -complete. 

• Quantum analog of constraint satisfaction. 

• Captures a lot of “physics” 
• Ground energy of Hamiltonians 
• Representability of Fermionic systems 
• Identity check for quantum channels 

• If , then anything you could verify about a ground state could be 
written down as a classical string! 

• Otherwise, there must be something interesting about ground states you can only 
learn from having a copy of the state!
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Why care about  versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
Studying  versus  is kind of like asking: 

Are all “relevant” properties of quantum ground states 
possible to write down classically?
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, among other things. 

Next best thing: Oracle separation! 

• There are many kinds of oracle separations we could prove. 

• Quantum oracle separation: Everyone gets access to a family of unitaries . 

• Classical oracle separation: Everyone gets access to a function . 

• For this problem, a classical oracle separation is much more challenging (and hopefully 
interesting) than a quantum oracle separation.  

𝖯 ≠ 𝖯𝖲𝖯𝖠𝖢𝖤

{Un}∞
n=1

𝒪 : {0,1}* ↦ {0,1}



We prove that there is a classical oracle 
relative to which 𝖰𝖬𝖠 ≠ 𝖰𝖢𝖬𝖠
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Why is this problem so hard?
To me, the problem has been “stuck” in between two 
competing desires for a while. 

• In any separation, the  must do more than 
just measure their quantum state  

 The classical oracle should have some hidden 
structure that is only “visible” to a quantum proof.   

• But, quantum lower bound techniques usually 
take advantage of the randomness of the oracle.  

 Need a new technique for analyzing some kind 
of structured classical oracles.   

Our paper bridges the gap, taking the less structured 
oracle of Zhandry’24, and introducing new analysis.
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Consider a scaled-down version of a  verifier that runs in  time: 

• There is some language  of -bit strings.   

• Our input is now a -bit string that we treat as an oracle.  

• Our verifier get a -bit quantum state, and gets to make controlled quantum 
queries to the oracle.   

• Has to decide whether the oracle is in  or  with  gap, promised one is 
the case. 

Similarly we can define a scaled-down version of a  verifier.   

If you can prove that there is a language separating scaled-down  from , you 
can use standard diagonalization tricks to turn this into a classical oracle separation.  
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L = (Lyes, Lno) N
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The spectral Forrelation problem
The spectral Forrelation problem is a problem about pairs of sets , which we treat 
as oracles through the set membership functions.  ~positions, and ~momentums.
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The spectral Forrelation problem
Given oracle access to two sets  (via set membership functions), determine if there 
is a state  such that   is large ( ) or small ( ), 
promised that one of the two is the case.  

(S, U)
|ψ⟩ ∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2 ≥ 59/100 ≤ 57/100
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Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state : 

• Use  oracle to measure the POVM 
, reject if the outcome is . 

• Apply  to the resulting state. 

• Use  oracle to measure the POVM 
, reject it the outcome is . 

• Accept.

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

H⊗n

U
{ΠU, id − ΠU} id − ΠU

This verifier accepts with probability:
. 

Marriot-Watrous amplification can bring 
this to the standard  or .

∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2

2/3 1/3
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Main theorems
Theorem 1: For all , and all quantum query algorithms making  queries to 
a set membership oracle for , the probability, over , that the algorithm outputs  
distinct points from  is at most  

. 

Theorem 2: If there exists a  algorithm, making  queries to  and 
taking a witness of length , then for all , there is a query algorithm 
making  queries to  that outputs  distinct points from  with probability 

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ ( poly(v, T)
poly(2n) )

v

𝖰𝖢𝖬𝖠 t = t(n) (S, U)
q = q(n) 0 < v < ℓ/100

vt U v S

≥ 2−q ( 1
36t2 )

v
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Strong yes instances
A pair  is a strong yes instance if: 

•  is a yes instance of spectral Forrelation (i.e., 
 spectrally Forrelated). 

• For all  with ,  is a no instance 
of spectral Forrelation (i.e.,  spectrally 
Forrelated).

(S, U)

(S, U)
≥ 59/100

Δ ⊂ S |Δ | ≤ ℓ/100 (Δ, U)
≤ 57/100
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roughly get something that looks like 

 

If this was really the matrix, then taking any  sub-matrix only get a small part of 
the mass of , making its operator norm close to .    

Using concentration bounds, we get that with very high probability, this happens.
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Strong yes instances can be sampled from
Any quantum query algorithm that distinguishes between  and  must 
query a point in  pretty often (  chance per query ), since otherwise the action of 
the oracles is identical.   

Therefore, measuring a random query of the algorithm will yield a point in  with good 
probability, .
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Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until  points have been 
sampled!  This is the key step that uses the fact that the witness is classical. 

ℓ/100



Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until  points have been 
sampled!  This is the key step that uses the fact that the witness is classical. 

Given a  algorithm, we can guess the classical witness and be correct with 
probability .  

ℓ/100

𝖰𝖢𝖬𝖠
2−q



Rest of the talk: sampling probability upper 
bound via the compressed oracle technique. 



Recall: The theorem we’re trying to prove:

Theorem 1: For all , and all quantum query algorithms making  queries to 
a set membership oracle for , the probability, over , that the algorithm outputs  
distinct points from  is at most  

. 

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v
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We can imagine this came from tracing out part of the state: 

 

where 

𝔼𝒪∼D[A𝒪]

1

∏
i=t

(𝗉𝖿𝖮 ⋅ A) |0⟩∑
𝒪

D(𝒪) |𝒪⟩
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Purification of quantum query algorithms

The purifying register starts out 
unentangled and a successful algorithm will 
generate a specific type of entanglement 
(depending on the task) 

Say that you have an algorithm that acts on a distribution over oracles, 
i.e., 

 

We can imagine this came from tracing out part of the state: 

 

where 
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Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
Recall that we sampled  via the following: 

• We will first sample  many random elements .  Let  be the 
uniform superposition over the points. 

• We take  to be the heavy points of , the Hadamard transform of : 
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Recall that we sampled  via the following: 

• We will first sample  many random elements .  Let  be the 
uniform superposition over the points. 

• We take  to be the heavy points of , the Hadamard transform of : 

 

Let’s focus on purifying the distribution over  first!

𝖲𝗍𝗋𝗈𝗇𝗀

ℓ = 2n/10 s1, …, sℓ |S⟩

U H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1

10
⟨y |H⊗n |S⟩

2)

S



Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
The Fock basis is a way to write down a multi-set, similar to how we write subsets of  

 as  bit strings.  Given a multi-set with  copies of , we associate it with a vector 
of  non-negative integers: 
{0,1}n 2n ℓx x
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|ℓ0, …, ℓ2n−1⟩



Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
The Fock basis is a way to write down a multi-set, similar to how we write subsets of  

 as  bit strings.  Given a multi-set with  copies of , we associate it with a vector 
of  non-negative integers: 

 

Then the uniform superposition over multi-sets is given by 

 

{0,1}n 2n ℓx x
2n

|ℓ0, …, ℓ2n−1⟩

1

2n ∑⃗
ℓ

ℓ!
∏x ℓx!

|ℓ0, …, ℓ2n⟩ .
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Bosons are a mathematical representation of multi-sets used in physics.  The 
“annihilation” and “creation” operators add and subtract elements (bosons).   
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Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Bosons are a mathematical representation of multi-sets used in physics.  The 
“annihilation” and “creation” operators add and subtract elements (bosons).   

 

 

Taking the product, the number operator  is diagonal in the position Fock basis, 
and applies a scaling of the number of bosons in the ’th mode.  

̂ax |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx |ℓ0, …, ℓx − 1,…, ℓ2n−1⟩

̂a†
x |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx + 1 |ℓ0, …, ℓx + 1,…, ℓ2n−1⟩

̂nx = ̂a†
x ̂ax

x



Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
We can also define a “Hadamard” basis for the bosons, with the analogous operators: 

 

    and    

As a matter of notation, we also define  to be the state .  

ãy =
1

2n ∑
x

(−1)y⋅x ̂ax ã†
y =

1

2n ∑
x

(−1)y⋅x ̂a†
x

|vac⟩ |0,…,0⟩
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Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Claim: The purification of a random multi-set is: 

 

Proof: Expand out the expression: 

 

If you deal with the coefficients (and multiplicities of the multi-sets), it works out.  😊

| init⟩ =
1

ℓ! (ã†
0)

ℓ
|vac⟩

1

ℓ! (ã†
0)

ℓ
|vac⟩ =

1

2nℓ ⋅ ℓ! ∑
s1,…,sℓ

̂a†
s1

… ̂a†
sℓ

|vac⟩



Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Roughly, querying  at some fixed  is like querying the squared Fourier coefficient .  
What happens when we apply the diagonal matrix 

? 
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Roughly, querying  at some fixed  is like querying the squared Fourier coefficient .  
What happens when we apply the diagonal matrix 

? 

Let’s define the momentum hopping and double hopping operators 

    and   

U y γ(S)
y

∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) |

G̃ y =
1

ℓ ∑
x∈{0,1}n

ã†
x⊕yãx H̃ y =

1
ℓ ∑

x,x′￼∈{0,1}n

ã†
x⊕yã

†
x′￼⊕yãxãx′￼
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Claim: The diagonal matrix that applies the squared Fourier coefficient is actually: 
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Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Claim: The diagonal matrix that applies the squared Fourier coefficient is actually: 

 

Proof: We can expand out a position Fock state in the momentum basis and directly 
compute the action of the hopping operator (the double hopping is the square): 

 

When we apply the hop and re-index the sum, we see that we just get a phase kickback!

∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) | = H̃ y + id

G̃ y ̂a†
s1

… ̂a†
sℓ

|vac⟩ = G̃ y ∑
t1,…,tℓ

(∏
i

(−1)ti⋅si) ã†
t1
…ã†

tℓ
|vac⟩



Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned: 

• In momentum space, the initial state of the  register looks like  bosons in the 
-momentum mode. 

S ℓ 0



Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned: 

• In momentum space, the initial state of the  register looks like  bosons in the 
-momentum mode. 

• Applying a query to  roughly looks like applying the double hopping operator 
.   

S ℓ 0

U
H̃ y + id



Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned: 

• In momentum space, the initial state of the  register looks like  bosons in the 
-momentum mode. 

• Applying a query to  roughly looks like applying the double hopping operator 
.   

How does this let us prove a sampling probability upper bound? 

S ℓ 0

U
H̃ y + id



Quasi-even condensates
A -quasi-even condensate is a momentum Fock state  that satisfies: 

Condensate: , i.e., almost all of the bosons are in their initial position. 
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Quasi-even condensates
A -quasi-even condensate is a momentum Fock state  that satisfies: 

Condensate: , i.e., almost all of the bosons are in their initial position. 

Quasi-even: At most  of the non-zero indices are odd.

(r, o) |ℓ0, …, ℓ2n⟩

ℓ0 ≥ ℓ − r

o



Sampling bounds on quasi-even condensates
Claim: Let  be a state that is supported entirely on -quasi-even condensate, then 
the following bound holds for all collections : 

 

|ψ⟩ (r, o)
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Sampling bounds on quasi-even condensates
Claim: Let  be a state that is supported entirely on -quasi-even condensate, then 
the following bound holds for all collections : 

 

This number upper bounds the sampling success probability (applying Markov’s 
inequality). If we knew that the algorithm’s purified state was supported only on quasi-
even condensates, we would be done.  

|ψ⟩ (r, o)
z1, …, zv ∈ {0,1}n

⟨ψ |nz1
…, nzℓ

|ψ⟩ ≤ (poly(v, r) ⋅
ℓ

2n/4 )
v
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 , and 
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y)

2
⋅ Shiftx = Shift†x ⋅ ã†
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Sampling bounds on quasi-even condensates
Intuition for why quasi-evenness is the right notion:  

• Imagine the position shift operator .   

• If we apply it to a momentum operator, we get , meaning 
 

 , and 

 

• This means that bosons in the condensate ( -momentum) and paired up are spread 
out uniformly among the positions (relative to the adversary’s state), and therefore 
hard to guess.

Shift†x ⋅ a†
y ⋅ Shiftx = a†

x⊕y

Shift†x ⋅ ã†
y ⋅ Shiftx = (−1)x⋅yã†

y

Shift†x ⋅ ã†
0 ⋅ Shiftx = ã†

0

Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = Shift†x ⋅ ã†

y ⋅ Shiftx ⋅ Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = (ã†

y)
2
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Sampling bounds on quasi-even condensates
The final step is to show that an adversary querying the purified  is supported mostly 
on quasi-even condensates.   

Roughly: The double hopping operator picks random bosons, so as long as it touches a 
-condensate, most of its “weight” is two bosons from  to  momentum (on query ).   
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Sampling bounds on quasi-even condensates
The final step is to show that an adversary querying the purified  is supported mostly 
on quasi-even condensates.   

Roughly: The double hopping operator picks random bosons, so as long as it touches a 
-condensate, most of its “weight” is two bosons from  to  momentum (on query ).   

After -queries, we would expect to have a -condensate, and fewer than  
unpaired bosons, except with probability roughly .

U

r
0 y y

T ∼ 2T v/4

(vT3 ℓ /2n/4)
v
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Missing details
Many details were omitted, happy to explain them in more detail after these slides! 

• Queries to  are actually more like measurements of Kraus operators  
 and . 

• Applying a flat polynomial approximation, we can show that these are close to 
polynomial in  whose degree is , which then gives us a condensate. 

• But, this polynomial is not necessarily bounded anymore, so we need to bring in tools 
from perturbation theory (the Dyson series) to prove the quasi-even property.  

U
E0 = (1 − exp(− G̃ 2

y /10)) E1 = exp(−G̃2
y /10)(2 − exp(−G̃2

y /10))

G̃ 2
y ∼ T10



Main theorems
Theorem 1: For all , and all quantum query algorithms making  queries to 
a set membership oracle for , the probability, over , that the algorithm outputs  
distinct points from  is at most  

. 

Theorem 2: If there exists a  algorithm, making  queries to  and 
taking a witness of length , then for all , there is a query algorithm 
making  queries to  that outputs  distinct points from  with probability 
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a set membership oracle for , the probability, over , that the algorithm outputs  
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taking a witness of length , then for all , there is a query algorithm 
making  queries to  that outputs  distinct points from  with probability 
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When , we get a contradictionv ∼ 1000q
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 That power is what we think makes them not reusable! 
 Our proof finds a task (sampling) that should be really hard, and shows that a 

reusable proof would be too good to be true.  
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Takeaways
• Quantum proofs are really powerful! 

 That power is what we think makes them not reusable! 
 Our proof finds a task (sampling) that should be really hard, and shows that a 

reusable proof would be too good to be true.   

• Small structural changes can have a huge impact! 
 The bosonic compressed oracle came from not requiring that  has exactly  

elements, and allowing it to be a multi-set with independent elements instead. 
 This removal of structure allowed us to understand queries to the Fourier transform 

of an oracle way better than we could before! 

• Much more work is needed! 
 Understanding oracles with structure seems to require an understanding that 

structure, seem to be annoying to deal with using general methods.   
 To understand other oracles (expander mixing problem, Yamakawa-Zhandry, etc.), 

we will need more specific tools, or a big leap in understanding of quantum 
algorithms.

→
→
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→

→
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Open questions
• Can we find new constructions/security proofs for quantum money?  

 Our ideas lie in the intersection of ideas used for quantum money (subset states  
subspace states, Fourier transform of   Fourier transform for group actions). 

 We also prove a separation between  and , feels like we should 
be able to say something about quantum money, but what?
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Open questions
• Can we find new constructions/security proofs for quantum money?  

 Our ideas lie in the intersection of ideas used for quantum money (subset states  
subspace states, Fourier transform of   Fourier transform for group actions). 

 We also prove a separation between  and , feels like we should 
be able to say something about quantum money, but what? 

• Can we use our oracle/techniques to solve other problems in query complexity? 
  versus ? 
  search-to-decision? 

• Is there a connection to the Aaronson-Ambainis conjecture? 
 Both Liu-Mutreja-Yuen’24 and Zhandry’24 showed that there is a connection 

between  versus  and pseudorandomness against quantum algorithms. 
 Our proof didn’t say anything about this, but could you use our techniques? 
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Thanks for listening!


