
Separating QMA from QCMA with a
classical oracle
John Bostanci, Jonas Haferkamp, Chinmay Nirkhe, and Mark Zhandry

How do model the power of proofs?
In complexity theory, the class captures the kinds of problems that we hope to be able
to prove to one another.

𝖭𝖯

How do model the power of quantum proofs?
With quantum computers, we can compare the relative powers of quantum proofs and
classical proofs. captures the kinds of problems we could prove classically.𝖰𝖢𝖬𝖠

How do model the power of quantum proofs?
With quantum computers, we can compare the relative powers of quantum proofs and
classical proofs. captures the kinds of problems we could prove quantumly.𝖰𝖬𝖠

Why care about versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
The local Hamiltonian problem is -complete.

• Quantum analog of constraint satisfaction.

𝖰𝖬𝖠

Why care about versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
The local Hamiltonian problem is -complete.

• Quantum analog of constraint satisfaction.

• Captures a lot of “physics”
• Ground energy of Hamiltonians
• Representability of Fermionic systems
• Identity check for quantum channels

𝖰𝖬𝖠

Why care about versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
The local Hamiltonian problem is -complete.

• Quantum analog of constraint satisfaction.

• Captures a lot of “physics”
• Ground energy of Hamiltonians
• Representability of Fermionic systems
• Identity check for quantum channels

• If , then anything you could verify about a ground state could be
written down as a classical string!

𝖰𝖬𝖠

𝖰𝖢𝖬𝖠 = 𝖰𝖬𝖠

Why care about versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
The local Hamiltonian problem is -complete.

• Quantum analog of constraint satisfaction.

• Captures a lot of “physics”
• Ground energy of Hamiltonians
• Representability of Fermionic systems
• Identity check for quantum channels

• If , then anything you could verify about a ground state could be
written down as a classical string!

• Otherwise, there must be something interesting about ground states you can only
learn from having a copy of the state!

𝖰𝖬𝖠

𝖰𝖢𝖬𝖠 = 𝖰𝖬𝖠

Why care about versus ?𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
Studying versus is kind of like asking:

Are all “relevant” properties of quantum ground states
possible to write down classically?

𝖰𝖬𝖠 𝖰𝖢𝖬𝖠

What can we say?
We could prove that they are equal… but say that we don’t want to do that.

What can we say?
We could prove that they are equal… but say that we don’t want to do that.

Unfortunately, proving an outright separation between the two classes would imply
, among other things. 𝖯 ≠ 𝖯𝖲𝖯𝖠𝖢𝖤

What can we say?
We could prove that they are equal… but say that we don’t want to do that.

Unfortunately, proving an outright separation between the two classes would imply
, among other things.

Next best thing: Oracle separation!

𝖯 ≠ 𝖯𝖲𝖯𝖠𝖢𝖤

What can we say?
We could prove that they are equal… but say that we don’t want to do that.

Unfortunately, proving an outright separation between the two classes would imply
, among other things.

Next best thing: Oracle separation!

• There are many kinds of oracle separations we could prove.

• Quantum oracle separation: Everyone gets access to a family of unitaries .

• Classical oracle separation: Everyone gets access to a function .

𝖯 ≠ 𝖯𝖲𝖯𝖠𝖢𝖤

{Un}∞
n=1

𝒪 : {0,1}* ↦ {0,1}

What can we say?
We could prove that they are equal… but say that we don’t want to do that.

Unfortunately, proving an outright separation between the two classes would imply
, among other things.

Next best thing: Oracle separation!

• There are many kinds of oracle separations we could prove.

• Quantum oracle separation: Everyone gets access to a family of unitaries .

• Classical oracle separation: Everyone gets access to a function .

• For this problem, a classical oracle separation is much more challenging (and hopefully
interesting) than a quantum oracle separation.

𝖯 ≠ 𝖯𝖲𝖯𝖠𝖢𝖤

{Un}∞
n=1

𝒪 : {0,1}* ↦ {0,1}

We prove that there is a classical oracle
relative to which 𝖰𝖬𝖠 ≠ 𝖰𝖢𝖬𝖠

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• First proposed in ’02 by Aharanov and

Naveh.

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• First proposed in ’02 by Aharanov and

Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each
𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• First proposed in ’02 by Aharanov and

Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
separation.

𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• First proposed in ’02 by Aharanov and

Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
oracle separation.

• Fefferman & Kimmel ’15: In-place
permutation oracle. Problem
corresponds to set size estimation.

𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• Natarajan & Nirkhe ’22: Distribution

testing oracle. Problem corresponds to size
estimation of an expander graph.

• First proposed in ’02 by Aharanov and
Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
oracle separation.

• Fefferman & Kimmel ’15: In-place
permutation oracle. Problem
corresponds to set size estimation.

𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• Natarajan & Nirkhe ’22: Distribution

testing oracle. Problem corresponds to size
estimation of an expander graph.

• Li, Liu, Pelecanos, Yamakawa ’23:
Separation assuming only classical queries.
Based on “Verifiable Quantum Advantage
without Structure”.

• First proposed in ’02 by Aharanov and
Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
oracle separation.

• Fefferman & Kimmel ’15: In-place
permutation oracle. Problem
corresponds to set size estimation.

𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• Natarajan & Nirkhe ’22: Distribution

testing oracle. Problem corresponds to size
estimation of an expander graph.

• Li, Liu, Pelecanos, Yamakawa ’23:
Separation assuming only classical queries.
Based on “Verifiable Quantum Advantage
without Structure”.

• Ben-David & Kundu ’24: Bounded
adaptivity, based on “Verifiable Quantum
Advantage without Structure”.

• First proposed in ’02 by Aharanov and
Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
oracle separation.

• Fefferman & Kimmel ’15: In-place
permutation oracle. Problem
corresponds to set size estimation.

𝒪n = id − 2 |ψn⟩⟨ψn |

History of the versus problem𝖰𝖬𝖠 𝖰𝖢𝖬𝖠
• Natarajan & Nirkhe ’22: Distribution

testing oracle. Problem corresponds to size
estimation of an expander graph.

• Li, Liu, Pelecanos, Yamakawa ’23:
Separation assuming only classical queries.
Based on “Verifiable Quantum Advantage
without Structure”.

• Ben-David & Kundu ’24: Bounded
adaptivity, based on “Verifiable Quantum
Advantage without Structure”.

• Liu, Mutreja, Yuen ’25: Aaronson-
Ambainis-like conjecture implies QMA
QCMA separation. Problem corresponds to
size estimation of an expander graph.

• First proposed in ’02 by Aharanov and
Naveh.

• Aaronson & Kuperberg ’06: Quantum
oracle separation. Each

• Lutomirski ’11: Proposed the expander
mixing problem as a candidate classical
oracle separation.

• Fefferman & Kimmel ’15: In-place
permutation oracle. Problem
corresponds to set size estimation.

𝒪n = id − 2 |ψn⟩⟨ψn |

Why is this problem so hard?
To me, the problem has been “stuck” in between two
competing desires for a while.

Why is this problem so hard?
To me, the problem has been “stuck” in between two
competing desires for a while.

• In any separation, the must do more than
just measure their quantum state

 The classical oracle should have some hidden
structure that is only “visible” to a quantum proof.

𝖰𝖬𝖠

→

Why is this problem so hard?
To me, the problem has been “stuck” in between two
competing desires for a while.

• In any separation, the must do more than
just measure their quantum state

 The classical oracle should have some hidden
structure that is only “visible” to a quantum proof.

• But, quantum lower bound techniques usually
take advantage of the randomness of the oracle.

 Need a new technique for analyzing some kind
of structured classical oracles.

𝖰𝖬𝖠

→

→

Why is this problem so hard?
To me, the problem has been “stuck” in between two
competing desires for a while.

• In any separation, the must do more than
just measure their quantum state

 The classical oracle should have some hidden
structure that is only “visible” to a quantum proof.

• But, quantum lower bound techniques usually
take advantage of the randomness of the oracle.

 Need a new technique for analyzing some kind
of structured classical oracles.

Our paper bridges the gap, taking the less structured
oracle of Zhandry’24, and introducing new analysis.

𝖰𝖬𝖠

→

→

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:𝖰𝖬𝖠 polylog(N)

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

• Our input is now a -bit string that we treat as an oracle.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

N = 2n

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

• Our input is now a -bit string that we treat as an oracle.

• Our verifier get a -bit quantum state, and gets to make controlled quantum
queries to the oracle.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

N = 2n

poly(n)

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

• Our input is now a -bit string that we treat as an oracle.

• Our verifier get a -bit quantum state, and gets to make controlled quantum
queries to the oracle.

• Has to decide whether the oracle is in or with gap, promised one is
the case.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

N = 2n

poly(n)

Lyes Lno 2/3, 1/3

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

• Our input is now a -bit string that we treat as an oracle.

• Our verifier get a -bit quantum state, and gets to make controlled quantum
queries to the oracle.

• Has to decide whether the oracle is in or with gap, promised one is
the case.

Similarly we can define a scaled-down version of a verifier.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

N = 2n

poly(n)

Lyes Lno 2/3, 1/3

𝖰𝖢𝖬𝖠

Preliminaries: Oracle input problems
Consider a scaled-down version of a verifier that runs in time:

• There is some language of -bit strings.

• Our input is now a -bit string that we treat as an oracle.

• Our verifier get a -bit quantum state, and gets to make controlled quantum
queries to the oracle.

• Has to decide whether the oracle is in or with gap, promised one is
the case.

Similarly we can define a scaled-down version of a verifier.

If you can prove that there is a language separating scaled-down from , you
can use standard diagonalization tricks to turn this into a classical oracle separation.

𝖰𝖬𝖠 polylog(N)

L = (Lyes, Lno) N

N = 2n

poly(n)

Lyes Lno 2/3, 1/3

𝖰𝖢𝖬𝖠

𝖰𝖬𝖠 𝖰𝖢𝖬𝖠

The spectral Forrelation problem
The spectral Forrelation problem is a problem about pairs of sets , which we treat
as oracles through the set membership functions. ~positions, and ~momentums.

(S, U)
S U

The spectral Forrelation problem
We say that two sets are -spectrally Forrelated if there is a state such that (S, U) α |ψ⟩

∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2 ≥ α

The spectral Forrelation problem
Given oracle access to two sets (via set membership functions), determine if there
is a state such that is large () or small (),
promised that one of the two is the case.

(S, U)
|ψ⟩ ∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2 ≥ 59/100 ≤ 57/100

Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state :

• Use oracle to measure the POVM
, reject if the outcome is .

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state :

• Use oracle to measure the POVM
, reject if the outcome is .

• Apply to the resulting state.

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

H⊗n

Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state :

• Use oracle to measure the POVM
, reject if the outcome is .

• Apply to the resulting state.

• Use oracle to measure the POVM
, reject it the outcome is .

• Accept.

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

H⊗n

U
{ΠU, id − ΠU} id − ΠU

Spectral Forrelation is in 𝖰𝖬𝖠
Given a copy of a state :

• Use oracle to measure the POVM
, reject if the outcome is .

• Apply to the resulting state.

• Use oracle to measure the POVM
, reject it the outcome is .

• Accept.

|ψ⟩

S
{ΠS, id − ΠS} id − ΠS

H⊗n

U
{ΠU, id − ΠU} id − ΠU

This verifier accepts with probability:
.

Marriot-Watrous amplification can bring
this to the standard or .

∥ΠU ⋅ H⊗n ⋅ ΠS |ψ⟩∥2

2/3 1/3

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements .
ℓ = 2n/10

s1, …, sℓ

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

ℓ = 2n/10

s1, …, sℓ |S⟩

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

• We take to be the heavy points of
, the Hadamard transform of :

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1
10

2n ⟨y |H⊗n |S⟩
2)

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

• We take to be the heavy points of
, the Hadamard transform of :

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1
10

2n ⟨y |H⊗n |S⟩
2)

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

• We take to be the heavy points of
, the Hadamard transform of :

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1
10

2n ⟨y |H⊗n |S⟩
2)

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

• We take to be the heavy points of
, the Hadamard transform of :

We call this distribution over oracles the
 distribution.

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1
10

2n ⟨y |H⊗n |S⟩
2)

𝖲𝗍𝗋𝗈𝗇𝗀

A distribution over spectral Forrelation yes instances
• We will first sample many random

elements . Let be the uniform
superposition over the points.

• We take to be the heavy points of
, the Hadamard transform of :

We call this distribution over oracles the
 distribution.

ℓ = 2n/10

s1, …, sℓ |S⟩

U
H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1
10

2n ⟨y |H⊗n |S⟩
2)

𝖲𝗍𝗋𝗈𝗇𝗀

γ(S)
y

Main theorems

Main theorems
Theorem 1: For all , and all quantum query algorithms making queries to
a set membership oracle for , the probability, over , that the algorithm outputs
distinct points from is at most

.

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ (poly(v, T)
poly(2n))

v

Main theorems
Theorem 1: For all , and all quantum query algorithms making queries to
a set membership oracle for , the probability, over , that the algorithm outputs
distinct points from is at most

.

Theorem 2: If there exists a algorithm, making queries to and
taking a witness of length , then for all , there is a query algorithm
making queries to that outputs distinct points from with probability

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ (poly(v, T)
poly(2n))

v

𝖰𝖢𝖬𝖠 t = t(n) (S, U)
q = q(n) 0 < v < ℓ/100

vt U v S

≥ 2−q (1
36t2)

v

Strong yes instances
A pair is a strong yes instance if:(S, U)

Strong yes instances
A pair is a strong yes instance if:

• is a yes instance of spectral Forrelation (i.e.,
 spectrally Forrelated).

(S, U)

(S, U)
≥ 59/100

Strong yes instances
A pair is a strong yes instance if:

• is a yes instance of spectral Forrelation (i.e.,
 spectrally Forrelated).

• For all with , is a no instance
of spectral Forrelation (i.e., spectrally
Forrelated).

(S, U)

(S, U)
≥ 59/100

Δ ⊂ S |Δ | ≤ ℓ/100 (Δ, U)
≤ 57/100

Strong yes instances
Claim: sampled from the distribution will be a strong yes instance, except
with probability .

(S, U) 𝖲𝗍𝗋𝗈𝗇𝗀
ℓ2n/6

Strong yes instances
Claim: sampled from the distribution will be a strong yes instance, except
with probability .

Proof sketch: When we compute the expectation over of the “Forrelation” matrix, we
roughly get something that looks like

(S, U) 𝖲𝗍𝗋𝗈𝗇𝗀
ℓ2n/6

U

𝔼U[ΠS ⋅ H⊗n ⋅ ΠU ⋅ H⊗n ⋅ ΠS] ≈
1
10

|S⟩⟨S | +
1
2

id

Strong yes instances
Claim: sampled from the distribution will be a strong yes instance, except
with probability .

Proof sketch: When we compute the expectation over of the “Forrelation” matrix, we
roughly get something that looks like

If this was really the matrix, then taking any sub-matrix only get a small part of
the mass of , making its operator norm close to .

(S, U) 𝖲𝗍𝗋𝗈𝗇𝗀
ℓ2n/6

U

𝔼U[ΠS ⋅ H⊗n ⋅ ΠU ⋅ H⊗n ⋅ ΠS] ≈
1
10

|S⟩⟨S | +
1
2

id

Δ × Δ
|S⟩ 1/2

Strong yes instances
Claim: sampled from the distribution will be a strong yes instance, except
with probability .

Proof sketch: When we compute the expectation over of the “Forrelation” matrix, we
roughly get something that looks like

If this was really the matrix, then taking any sub-matrix only get a small part of
the mass of , making its operator norm close to .

Using concentration bounds, we get that with very high probability, this happens.

(S, U) 𝖲𝗍𝗋𝗈𝗇𝗀
ℓ2n/6

U

𝔼U[ΠS ⋅ H⊗n ⋅ ΠU ⋅ H⊗n ⋅ ΠS] ≈
1
10

|S⟩⟨S | +
1
2

id

Δ × Δ
|S⟩ 1/2

Any quantum query algorithm that distinguishes between and must query a
point in pretty often (chance per query), since otherwise the action of the
oracles is identical.

(S, U) (∅, U)
S ≥ 1/3t

Strong yes instances can be sampled from

Any quantum query algorithm that distinguishes between and must query a
point in pretty often (chance per query), since otherwise the action of the
oracles is identical.

Therefore, measuring a random query of the algorithm will yield a point in with good
probability, .

(S, U) (∅, U)
S ≥ 1/3t

S
x1

Strong yes instances can be sampled from

Strong yes instances can be sampled from
Any quantum query algorithm that distinguishes between and must
query a point in pretty often (chance per query), since otherwise the action of
the oracles is identical.

(S, U) ({x1}, U)
S ≥ 1/3t

Strong yes instances can be sampled from
Any quantum query algorithm that distinguishes between and must
query a point in pretty often (chance per query), since otherwise the action of
the oracles is identical.

Therefore, measuring a random query of the algorithm will yield a point in with good
probability, .

(S, U) ({x1}, U)
S ≥ 1/3t

S
x2

Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until points have been
sampled! This is the key step that uses the fact that the witness is classical.

ℓ/100

Strong yes instances can be sampled from
Because of the strong yes property, we can keep going until points have been
sampled! This is the key step that uses the fact that the witness is classical.

Given a algorithm, we can guess the classical witness and be correct with
probability .

ℓ/100

𝖰𝖢𝖬𝖠
2−q

Rest of the talk: sampling probability upper
bound via the compressed oracle technique.

Recall: The theorem we’re trying to prove:

Theorem 1: For all , and all quantum query algorithms making queries to
a set membership oracle for , the probability, over , that the algorithm outputs
distinct points from is at most

.

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ (poly(v, T)
poly(2n))

v

Purification of quantum query algorithms
Say that you have an algorithm that acts on a distribution over oracles,
i.e.,

 𝔼𝒪∼D[A𝒪]

Purification of quantum query algorithms
Say that you have an algorithm that acts on a distribution over oracles,
i.e.,

We can imagine this came from tracing out part of the state:

where

𝔼𝒪∼D[A𝒪]

1

∏
i=t

(𝗉𝖿𝖮 ⋅ A) |0⟩∑
𝒪

D(𝒪) |𝒪⟩

𝗉𝖿𝖮 = ∑
𝒪,x

(−1)𝒪(x) |x⟩⟨x | ⊗ |𝒪⟩⟨𝒪 |

Purification of quantum query algorithms

The purifying register starts out
unentangled and a successful algorithm will
generate a specific type of entanglement
(depending on the task)

Say that you have an algorithm that acts on a distribution over oracles,
i.e.,

We can imagine this came from tracing out part of the state:

where

𝔼𝒪∼D[A𝒪]

1

∏
i=t

(𝗉𝖿𝖮 ⋅ A) |0⟩∑
𝒪

D(𝒪) |𝒪⟩

𝗉𝖿𝖮 = ∑
𝒪,x

(−1)𝒪(x) |x⟩⟨x | ⊗ |𝒪⟩⟨𝒪 |

Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
Recall that we sampled via the following:

• We will first sample many random elements . Let be the
uniform superposition over the points.

• We take to be the heavy points of , the Hadamard transform of :

𝖲𝗍𝗋𝗈𝗇𝗀

ℓ = 2n/10 s1, …, sℓ |S⟩

U H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1

10
⟨y |H⊗n |S⟩

2)

Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
Recall that we sampled via the following:

• We will first sample many random elements . Let be the
uniform superposition over the points.

• We take to be the heavy points of , the Hadamard transform of :

Let’s focus on purifying the distribution over first!

𝖲𝗍𝗋𝗈𝗇𝗀

ℓ = 2n/10 s1, …, sℓ |S⟩

U H⊗n |S⟩ |S⟩

Pr[y ∈ U] = 1 −
1
2

exp (−
1

10
⟨y |H⊗n |S⟩

2)

S

Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
The Fock basis is a way to write down a multi-set, similar to how we write subsets of

 as bit strings. Given a multi-set with copies of , we associate it with a vector
of non-negative integers:
{0,1}n 2n ℓx x

2n

|ℓ0, …, ℓ2n−1⟩

Compressed oracles for 𝖲𝗍𝗋𝗈𝗇𝗀
The Fock basis is a way to write down a multi-set, similar to how we write subsets of

 as bit strings. Given a multi-set with copies of , we associate it with a vector
of non-negative integers:

Then the uniform superposition over multi-sets is given by

{0,1}n 2n ℓx x
2n

|ℓ0, …, ℓ2n−1⟩

1

2n ∑⃗
ℓ

ℓ!
∏x ℓx!

|ℓ0, …, ℓ2n⟩ .

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Bosons are a mathematical representation of multi-sets used in physics. The
“annihilation” and “creation” operators add and subtract elements (bosons).

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Bosons are a mathematical representation of multi-sets used in physics. The
“annihilation” and “creation” operators add and subtract elements (bosons).

 ̂ax |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx |ℓ0, …, ℓx − 1,…, ℓ2n−1⟩

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Bosons are a mathematical representation of multi-sets used in physics. The
“annihilation” and “creation” operators add and subtract elements (bosons).

̂ax |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx |ℓ0, …, ℓx − 1,…, ℓ2n−1⟩

̂a†
x |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx + 1 |ℓ0, …, ℓx + 1,…, ℓ2n−1⟩

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Bosons are a mathematical representation of multi-sets used in physics. The
“annihilation” and “creation” operators add and subtract elements (bosons).

Taking the product, the number operator is diagonal in the position Fock basis,
and applies a scaling of the number of bosons in the ’th mode.

̂ax |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx |ℓ0, …, ℓx − 1,…, ℓ2n−1⟩

̂a†
x |ℓ0, …, ℓx, …, ℓ2n−1⟩ = ℓx + 1 |ℓ0, …, ℓx + 1,…, ℓ2n−1⟩

̂nx = ̂a†
x ̂ax

x

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
We can also define a “Hadamard” basis for the bosons, with the analogous operators:

 and

As a matter of notation, we also define to be the state .

ãy =
1

2n ∑
x

(−1)y⋅x ̂ax ã†
y =

1

2n ∑
x

(−1)y⋅x ̂a†
x

|vac⟩ |0,…,0⟩

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Claim: The purification of a random multi-set is:

 | init⟩ =
1

ℓ! (ã†
0)

ℓ
|vac⟩

Compressed oracles for : Bosons𝖲𝗍𝗋𝗈𝗇𝗀
Claim: The purification of a random multi-set is:

Proof: Expand out the expression:

If you deal with the coefficients (and multiplicities of the multi-sets), it works out. 😊

| init⟩ =
1

ℓ! (ã†
0)

ℓ
|vac⟩

1

ℓ! (ã†
0)

ℓ
|vac⟩ =

1

2nℓ ⋅ ℓ! ∑
s1,…,sℓ

̂a†
s1

… ̂a†
sℓ

|vac⟩

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Roughly, querying at some fixed is like querying the squared Fourier coefficient .
What happens when we apply the diagonal matrix

?

U y γ(S)
y

∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) |

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Roughly, querying at some fixed is like querying the squared Fourier coefficient .
What happens when we apply the diagonal matrix

?

Let’s define the momentum hopping and double hopping operators

 and

U y γ(S)
y

∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) |

G̃ y =
1

ℓ ∑
x∈{0,1}n

ã†
x⊕yãx H̃ y =

1
ℓ ∑

x,x′￼∈{0,1}n

ã†
x⊕yã

†
x′￼⊕yãxãx′￼

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
What does the hopping operator do.

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
What does the hopping operator do.

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Claim: The diagonal matrix that applies the squared Fourier coefficient is actually:

 ∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) | = H̃ y + id

Compressed oracles for : Action of 𝖲𝗍𝗋𝗈𝗇𝗀 U
Claim: The diagonal matrix that applies the squared Fourier coefficient is actually:

Proof: We can expand out a position Fock state in the momentum basis and directly
compute the action of the hopping operator (the double hopping is the square):

When we apply the hop and re-index the sum, we see that we just get a phase kickback!

∑
S

γ(S)
y |Fock(S)⟩⟨Fock(S) | = H̃ y + id

G̃ y ̂a†
s1

… ̂a†
sℓ

|vac⟩ = G̃ y ∑
t1,…,tℓ

(∏
i

(−1)ti⋅si) ã†
t1
…ã†

tℓ
|vac⟩

Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned:

• In momentum space, the initial state of the register looks like bosons in the
-momentum mode.

S ℓ 0

Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned:

• In momentum space, the initial state of the register looks like bosons in the
-momentum mode.

• Applying a query to roughly looks like applying the double hopping operator
.

S ℓ 0

U
H̃ y + id

Compressed oracles for : Summary𝖲𝗍𝗋𝗈𝗇𝗀
So far, what we (hopefully) learned:

• In momentum space, the initial state of the register looks like bosons in the
-momentum mode.

• Applying a query to roughly looks like applying the double hopping operator
.

How does this let us prove a sampling probability upper bound?

S ℓ 0

U
H̃ y + id

Quasi-even condensates
A -quasi-even condensate is a momentum Fock state that satisfies:

Condensate: , i.e., almost all of the bosons are in their initial position.

(r, o) |ℓ0, …, ℓ2n⟩

ℓ0 ≥ ℓ − r

Quasi-even condensates
A -quasi-even condensate is a momentum Fock state that satisfies:

Condensate: , i.e., almost all of the bosons are in their initial position.

Quasi-even: At most of the non-zero indices are odd.

(r, o) |ℓ0, …, ℓ2n⟩

ℓ0 ≥ ℓ − r

o

Sampling bounds on quasi-even condensates
Claim: Let be a state that is supported entirely on -quasi-even condensate, then
the following bound holds for all collections :

|ψ⟩ (r, o)
z1, …, zv ∈ {0,1}n

⟨ψ |nz1
…, nzℓ

|ψ⟩ ≤ (poly(v, r) ⋅
ℓ

2n/4)
v

Sampling bounds on quasi-even condensates
Claim: Let be a state that is supported entirely on -quasi-even condensate, then
the following bound holds for all collections :

This number upper bounds the sampling success probability (applying Markov’s
inequality). If we knew that the algorithm’s purified state was supported only on quasi-
even condensates, we would be done.

|ψ⟩ (r, o)
z1, …, zv ∈ {0,1}n

⟨ψ |nz1
…, nzℓ

|ψ⟩ ≤ (poly(v, r) ⋅
ℓ

2n/4)
v

Sampling bounds on quasi-even condensates
Intuition for why quasi-evenness is the right notion:

• Imagine the position shift operator . Shift†x ⋅ a†
y ⋅ Shiftx = a†

x⊕y

Sampling bounds on quasi-even condensates
Intuition for why quasi-evenness is the right notion:

• Imagine the position shift operator .

• If we apply it to a momentum operator, we get , meaning

Shift†x ⋅ a†
y ⋅ Shiftx = a†

x⊕y

Shift†x ⋅ ã†
y ⋅ Shiftx = (−1)x⋅yã†

y

Sampling bounds on quasi-even condensates
Intuition for why quasi-evenness is the right notion:

• Imagine the position shift operator .

• If we apply it to a momentum operator, we get , meaning

 , and

Shift†x ⋅ a†
y ⋅ Shiftx = a†

x⊕y

Shift†x ⋅ ã†
y ⋅ Shiftx = (−1)x⋅yã†

y

Shift†x ⋅ ã†
0 ⋅ Shiftx = ã†

0

Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = Shift†x ⋅ ã†

y ⋅ Shiftx ⋅ Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = (ã†

y)
2

Sampling bounds on quasi-even condensates
Intuition for why quasi-evenness is the right notion:

• Imagine the position shift operator .

• If we apply it to a momentum operator, we get , meaning

 , and

• This means that bosons in the condensate (-momentum) and paired up are spread
out uniformly among the positions (relative to the adversary’s state), and therefore
hard to guess.

Shift†x ⋅ a†
y ⋅ Shiftx = a†

x⊕y

Shift†x ⋅ ã†
y ⋅ Shiftx = (−1)x⋅yã†

y

Shift†x ⋅ ã†
0 ⋅ Shiftx = ã†

0

Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = Shift†x ⋅ ã†

y ⋅ Shiftx ⋅ Shift†x ⋅ (ã†
y)

2
⋅ Shiftx = (ã†

y)
2

0

Sampling bounds on quasi-even condensates
The final step is to show that an adversary querying the purified is supported mostly
on quasi-even condensates.

Roughly: The double hopping operator picks random bosons, so as long as it touches a
-condensate, most of its “weight” is two bosons from to momentum (on query).

U

r
0 y y

Sampling bounds on quasi-even condensates
The final step is to show that an adversary querying the purified is supported mostly
on quasi-even condensates.

Roughly: The double hopping operator picks random bosons, so as long as it touches a
-condensate, most of its “weight” is two bosons from to momentum (on query).

After -queries, we would expect to have a -condensate, and fewer than
unpaired bosons, except with probability roughly .

U

r
0 y y

T ∼ 2T v/4

(vT3 ℓ /2n/4)
v

Missing details
Many details were omitted, happy to explain them in more detail after these slides!

Missing details
Many details were omitted, happy to explain them in more detail after these slides!

• Queries to are actually more like measurements of Kraus operators
 and .

U
E0 = (1 − exp(− G̃ 2

y /10)) E1 = exp(−G̃2
y /10)(2 − exp(−G̃2

y /10))

Missing details
Many details were omitted, happy to explain them in more detail after these slides!

• Queries to are actually more like measurements of Kraus operators
 and .

• Applying a flat polynomial approximation, we can show that these are close to
polynomial in whose degree is , which then gives us a condensate.

U
E0 = (1 − exp(− G̃ 2

y /10)) E1 = exp(−G̃2
y /10)(2 − exp(−G̃2

y /10))

G̃ 2
y ∼ T10

Missing details
Many details were omitted, happy to explain them in more detail after these slides!

• Queries to are actually more like measurements of Kraus operators
 and .

• Applying a flat polynomial approximation, we can show that these are close to
polynomial in whose degree is , which then gives us a condensate.

• But, this polynomial is not necessarily bounded anymore, so we need to bring in tools
from perturbation theory (the Dyson series) to prove the quasi-even property.

U
E0 = (1 − exp(− G̃ 2

y /10)) E1 = exp(−G̃2
y /10)(2 − exp(−G̃2

y /10))

G̃ 2
y ∼ T10

Main theorems
Theorem 1: For all , and all quantum query algorithms making queries to
a set membership oracle for , the probability, over , that the algorithm outputs
distinct points from is at most

.

Theorem 2: If there exists a algorithm, making queries to and
taking a witness of length , then for all , there is a query algorithm
making queries to that outputs distinct points from with probability

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ (poly(v, T)
poly(2n))

v

𝖰𝖢𝖬𝖠 t = t(n) (S, U)
q = q(n) 0 < v < ℓ/100

vt U v S

≥ 2−q (1
36t2)

v

Main theorems
Theorem 1: For all , and all quantum query algorithms making queries to
a set membership oracle for , the probability, over , that the algorithm outputs
distinct points from is at most

.

Theorem 2: If there exists a algorithm, making queries to and
taking a witness of length , then for all , there is a query algorithm
making queries to that outputs distinct points from with probability

v > 0 T = T(n)
U 𝖲𝗍𝗋𝗈𝗇𝗀 v

S

≤ (poly(v, T)
poly(2n))

v

𝖰𝖢𝖬𝖠 t = t(n) (S, U)
q = q(n) 0 < v < ℓ/100

vt U v S

≥ 2−q (1
36t2)

v

When , we get a contradictionv ∼ 1000q

Takeaways

Takeaways
• Quantum proofs are really powerful!

 That power is what we think makes them not reusable!
 Our proof finds a task (sampling) that should be really hard, and shows that a

reusable proof would be too good to be true.

→
→

Takeaways
• Quantum proofs are really powerful!

 That power is what we think makes them not reusable!
 Our proof finds a task (sampling) that should be really hard, and shows that a

reusable proof would be too good to be true.

• Small structural changes can have a huge impact!
 The bosonic compressed oracle came from not requiring that has exactly

elements, and allowing it to be a multi-set with independent elements instead.
 This removal of structure allowed us to understand queries to the Fourier transform

of an oracle way better than we could before!

→
→

→ S ℓ

→

Takeaways
• Quantum proofs are really powerful!

 That power is what we think makes them not reusable!
 Our proof finds a task (sampling) that should be really hard, and shows that a

reusable proof would be too good to be true.

• Small structural changes can have a huge impact!
 The bosonic compressed oracle came from not requiring that has exactly

elements, and allowing it to be a multi-set with independent elements instead.
 This removal of structure allowed us to understand queries to the Fourier transform

of an oracle way better than we could before!

• Much more work is needed!
 Understanding oracles with structure seems to require an understanding that

structure, seem to be annoying to deal with using general methods.
 To understand other oracles (expander mixing problem, Yamakawa-Zhandry, etc.),

we will need more specific tools, or a big leap in understanding of quantum
algorithms.

→
→

→ S ℓ

→

→

→

Open questions

Open questions
• Can we find new constructions/security proofs for quantum money?

 Our ideas lie in the intersection of ideas used for quantum money (subset states
subspace states, Fourier transform of Fourier transform for group actions).

 We also prove a separation between and , feels like we should
be able to say something about quantum money, but what?

→ ↔
S ↔

→ 𝖴𝗇𝖼𝗅𝗈𝗇𝖺𝖻𝗅𝖾𝖰𝖬𝖠 𝖰𝖬𝖠

Open questions
• Can we find new constructions/security proofs for quantum money?

 Our ideas lie in the intersection of ideas used for quantum money (subset states
subspace states, Fourier transform of Fourier transform for group actions).

 We also prove a separation between and , feels like we should
be able to say something about quantum money, but what?

• Can we use our oracle/techniques to solve other problems in query complexity?
 versus ?
 search-to-decision?

→ ↔
S ↔

→ 𝖴𝗇𝖼𝗅𝗈𝗇𝖺𝖻𝗅𝖾𝖰𝖬𝖠 𝖰𝖬𝖠

→ 𝖡𝖰𝖯/qpoly 𝖡𝖰𝖯/poly
→ 𝖰𝖬𝖠

Open questions
• Can we find new constructions/security proofs for quantum money?

 Our ideas lie in the intersection of ideas used for quantum money (subset states
subspace states, Fourier transform of Fourier transform for group actions).

 We also prove a separation between and , feels like we should
be able to say something about quantum money, but what?

• Can we use our oracle/techniques to solve other problems in query complexity?
 versus ?
 search-to-decision?

• Is there a connection to the Aaronson-Ambainis conjecture?
 Both Liu-Mutreja-Yuen’24 and Zhandry’24 showed that there is a connection

between versus and pseudorandomness against quantum algorithms.
 Our proof didn’t say anything about this, but could you use our techniques?

→ ↔
S ↔

→ 𝖴𝗇𝖼𝗅𝗈𝗇𝖺𝖻𝗅𝖾𝖰𝖬𝖠 𝖰𝖬𝖠

→ 𝖡𝖰𝖯/qpoly 𝖡𝖰𝖯/poly
→ 𝖰𝖬𝖠

→
𝖰𝖢𝖬𝖠 𝖰𝖬𝖠

→

Thanks for listening!

