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How do model the power of proofs?

In complexity theory, the class NP captures the kinds of problems that we hope to be able
to prove to one another.
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Why care about QMA versus QCMA?

The local Hamiltonian problem is QMA-complete.
» Quantum analog of constraint satisfaction.

» Captures a lot of “physics”
 Ground energy of Hamiltonians
 Representability of Fermionic systems
» Identity check for quantum channels

» If QCMA = QMA, then anything you could verify about a ground state could be
written down as a classical string!

 Otherwise, there must be something interesting about ground states you can only
learn from having a copy of the state!



Why care about QMA versus QCMA?

Studying QMA versus QCMA is kind of like asking:

Are all “relevant” properties of quantum ground states
possible to write down classically?
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What can we say?

We could prove that they are equal... but say that we don’t want to do that.

Unfortunately, proving an outright separation between the two classes would imply
P # PSPACE, among other things.

Next best thing: Oracle separation!

» There are many kinds of oracle separations we could prove.

» Quantum oracle separation: Everyone gets access to a family of unitaries {U, } > ;.
» Classical oracle separation: Everyone gets access to a function O : {0,1}* — {0,1}.

» For this problem, a classical oracle separation is much more challenging (and hopetully
interesting) than a quantum oracle separation.



We prove that there is a classical oracle
relative to which QMA # QCMA
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permutation oracle. Problem

. .  Liu, Mutreja, Yuen ’25: Aaronson-
corresponds to set size estimation.

Ambainis-like conjecture implies QMA
QCMA separation. Problem corresponds to
size estimation of an expander graph.
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of structured classical oracles.

Our paper bridges the gap, taking the less structured
oracle of Zhandry’24, and introducing new analysis.
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Preliminaries: Oracle input problems

Consider a scaled-down version of a QMA verifier that runs in polylog(/N) time:
» There is some language L = (Ly., L,,) of N-Dit strings.
 Our input is now a N = 2"-bit string that we treat as an oracle.

» Our verifier get a poly(n)-bit quantum state, and gets to make controlled quantum
queries to the oracle.

- Has to decide whether the oracle is in L, or L, with 2/3, 1/3 gap, promised one is
the case.

Similarly we can define a scaled-down version of a QCMA verifier.

[f you can prove that there is a language separating scaled-down QMA from QCMA, you
can use standard diagonalization tricks to turn this into a classical oracle separation.



The spectral Forrelation problem

The spectral Forrelation problem is a problem about pairs of sets (S, U), which we treat
as oracles through the set membership functions. S~positions, and U~momentums.
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The spectral Forrelation problem

We say that two sets (S, U) are a-spectrally Forrelated if there is a state |y) such that
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The spectral Forrelation problem

Given oracle access to two sets (S, U) (via set membership functions), determine if there
is a state |y) such that ||IT,, - H®" - I | w)||* is large ( > 59/100) or small ( < 57/100),
promised that one of the two is the case.
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Spectral Forrelation is in QMA

Given a copy of a state |y):

o Use S oracle to measure the POVM
{Ilg,1d — I}, reject if the outcome is 1d — I1;.

» Apply H®" to the resulting state.

o Use U oracle to measure the POVM
{IT;;,1d — I1,}, reject it the outcome is 1d — I1;,.

» Accept.

This verifier accepts with probability:
ITT, - H®" - g | ) |I°.

Marriot-Watrous amplification can bring
this to the standard 2/3 or 1/3.
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Main theorems

Theorem 1: For all v > 0, and all quantum query algorithms making 7' = T(n) queries to
a set membership oracle for U, the probability, over Strong, that the algorithm outputs v

distinct points from § is at most
§ (poly(v, T) )V
~ \ poly2m /-

Theorem 2: If there exists a QCMA algorithm, making ¢ = #(n) queries to (S, U) and

taking a witness of length g = g(n), then for all 0 < v < /100, there is a query algorithm
making v queries to U that outputs v distinct points from § with probability

> 271 :
3612
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A pair (8, U) is a strong yes instance if:

» (S, U) 1s a yes instance of spectral Forrelation (i.e.,
> 59/100 spectrally Forrelated).

« Forall A c Swith |A| < £/100, (A, U) i1s a no instance
of spectral Forrelation (i.e., < 57/100 spectrally
Forrelated).
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Claim: (S, U) sampled from the Strong distribution will be a strong yes instance, except
with probability £#2"/°,

Proof sketch: When we compute the expectation over U of the “Forrelation” matrix, we
roughly get something that looks like

1 1
- - H® - T1,, - H®" - T1(] & I—O\SXS| +5id

It this was really the matrix, then taking any A X A sub-matrix only get a small part of
the mass of |S), making its operator norm close to 1/2.

Using concentration bounds, we get that with very high probability, this happens.
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oracles is identical.

Therefore, measuring a random query of the algorithm will yield a point in § with good
probability, x;.
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Any quantum query algorithm that distinguishes between (S, U) and ({x, }, U) must
query a point in S pretty often ( > 1/3¢ chance per query ), since otherwise the action of
the oracles 1s identical.

Therefore, measuring a random query of the algorithm will yield a point in § with good
probability, x,.
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Strong yes instances can be sampled from

Because of the strong yes property, we can keep going until £/100 points have been
sampled! This is the key step that uses the fact that the witness is classical.

Given a QCMA algorithm, we can guess the classical witness and be correct with
probability 279,



Rest of the talk: sampling probability upper
bound via the compressed oracle technique.



Recall: The theorem we’re trying to prove:

Theorem 1: For all v > 0, and all quantum query algorithms making 7' = T(n) queries to
a set membership oracle for U, the probability, over Strong, that the algorithm outputs v

distinct points from S is at most
- ( poly(v, T )V
~ \ poly@m /-
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Purification of quantum query algorithms

Say that you have an algorithm that acts on a distribution over oracles,
1.€.,

_@ND[A @]

We can imagine this came from tracing out part of the state:

1

[ [ (pfO-A)10) ) /D) |06)

. The purifying register starts out
where pfO = Z (=D ]xXx| @ | OXO| unentangled and a successful algorithm will
O.x generate a specific type of entanglement

(depending on the task)
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+ We will first sample # = 2" many random elements s, ..., s,. Let |S) be the
uniform superposition over the points.

» We take U to be the heavy points of H®"|S), the Hadamard transform of | S):

Prlye U]l =1 : : (y| H®"|S) 2
I =]l——exp| —
Y > P\ T IV

Let’s focus on purifying the distribution over S first!
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The Fock basis is a way to write down a multi-set, similar to how we write subsets of
{0,1}" as 2" bit strings. Given a multi-set with £, copies of x, we associate it with a vector
of 2" non-negative integers:

‘fo, ...,fzn_1>

Then the uniform superposition over multi-sets is given by
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Compressed oracles for Strong: Bosons

Bosons are a mathematical representation of multi-sets used in physics. The
“annihilation” and “creation” operators add and subtract elements (bosons).
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Taking the product, the number operator 7, = d'd, is diagonal in the position Fock basis,
and applies a scaling of the number of bosons in the x’th mode.




Compressed oracles for Strong: Bosons

We can also define a “Hadamard” basis for the bosons, with the analogous operators:

As a matter of notation, we also define | vac) to be the state |0,...,0).
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Claim: The purification of a random multi-set is:

1/ \?
| init) = (ag) | vac)
!

Proof: Expand out the expression:

1/ \¢ 1 .
(aé) | vac) = Z ajl...a;;\vac)

\/Z \/2’%& X2 S1sennsSy

It you deal with the coefhicients (and multiplicities of the multi-sets), it works out. &
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Compressed oracles for Strong: Action of U
(5)

Roughly, querying U at some fixed y is like querying the squared Fourier coefhicient ;.
What happens when we apply the diagonal matrix

Z yy(S) | Fock(S)XFock(S)| ?
S

Let’s define the momentum hopping and double hopping operators

— ] ~ 1
_ i _ 7T aa
G,= \/_ Z a9 and H, = y Z Aoy g, Gl
f xe{0,1}" x,x'e{0,1}"
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Compressed oracles for Strong: Action of U

Claim: The diagonal matrix that applies the squared Fourier coefhicient is actually:

—

D 79| Fock(S)XFock(S)| = H , +id
\)

Proof: We can expand out a position Fock state in the momentum basis and directly
compute the action of the hopping operator (the double hopping is the square):

G, ...a} |vac) = G, ) (H(—l)ff%) a;...a | vac)

Hoenly i

When we apply the hop and re-index the sum, we see that we just get a phase kickback!
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Compressed oracles for Strong: Summary
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H, +1d.
y

How does this let us prove a sampling probability upper bound?
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Quasi-even condensates

A (r, 0)-quasi-even condensate is a momentum Fock state |7, ..., £5,) that satisfies:
Condensate: £, > ¢ — r, i.e., almost all of the bosons are in their initial position.

Quasi-even: At most o of the non-zero indices are odd.

at moek © or\(l occw{\ea &’DXQS.




Sampling bounds on quasi-even condensates

Claim: Let |y) be a state that is supported entirely on (7, 0)-quasi-even condensate, then
the following bound holds for all collections z;, ..., z, € {0,1}":

AY
(wln,....n. |y) < (poly(v, r) - X )



Sampling bounds on quasi-even condensates

Claim: Let |y) be a state that is supported entirely on (7, 0)-quasi-even condensate, then
the following bound holds for all collections z;, ..., z, € {0,1}":

AY
wln,....n [y) < (poly(v, r) - X )

This number upper bounds the sampling success probability (applying Markov’s
inequality). If we knew that the algorithm’s purified state was supported only on quasi-
even condensates, we would be done.
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Sampling bounds on quasi-even condensates

Intuition for why quasi-evenness is the right notion:

o Imagine the position shift operator Shift! - a. - Shift, = ax@y

e If we apply it to a momentum operator, we get Shift! - NT - Shift, = (= 1)"a] " meaning

Shift] - a - Shift =a/ ,and

2 2
Shift’ - (a’;) - Shift, = Shift] - a] - Shift, - Shift] - (a]) - Shift, = ()

e This means that bosons in the condensate ()-momentum) and paired up are spread
out uniformly among the positions (relative to the adversary’s state), and therefore
hard to guess.
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The final step is to show that an adversary querying the purified U is supported mostly
on quasi-even condensates.

Roughly: The double hopping operator picks random bosons, so as long as it touches a r
-condensate, most of its “weight” is two bosons from 0 to y momentum (on query y).
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The final step is to show that an adversary querying the purified U is supported mostly
on quasi-even condensates.

Roughly: The double hopping operator picks random bosons, so as long as it touches a r
-condensate, most of its “weight” is two bosons from 0 to y momentum (on query y).

After T-queries, we would expect to have a ~ 2T-condensate, and fewer than v/4

unpaired bosons, except with probability roughly (VT3\/? /2" 4) .
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Missing details
Many details were omitted, happy to explain them in more detail after these slides!

* Queries to U are actually more like measurements of Kraus operators

Ey = (1 - exp(= G}/10)) and E; =  [exp(~G}/10)(2 - exp(~G}/10)).

» Applying a flat polynomial approximation, we can show that these are close to
polynomial in G % whose degree is ~ T'°, which then gives us a condensate.

» But, this polynomial is not necessarily bounded anymore, so we need to bring in tools
from perturbation theory (the Dyson series) to prove the quasi-even property.



Main theorems

Theorem 1: For all v > 0, and all quantum query algorithms making 7' = T(n) queries to
a set membership oracle for U, the probability, over Strong, that the algorithm outputs v

distinct points from § is at most
§ (poly(v, T) )V
~ \ poly2m /-

Theorem 2: If there exists a QCMA algorithm, making ¢ = #(n) queries to (S, U) and

taking a witness of length g = g(n), then for all 0 < v < /100, there is a query algorithm
making v queries to U that outputs v distinct points from § with probability

> 271 :
3612
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Theorem 1: For all v > 0, and all quantum query algorithms making 7' = T(n) queries to
a set membership oracle for U, the probability, over Strong, that the algorithm outputs v

distinct points from § is at most
§ (poly(v, T) )V
~ \ poly2m /-

Theorem 2: If there exists a QCMA algorithm, making ¢ = #(n) queries to (S, U) and

taking a witness of length g = g(n), then for all 0 < v < /100, there is a query algorithm
making v queries to U that outputs v distinct points from § with probability

> 271 :
3612

When v ~ 1000g, we get a contradiction




Takeaways



Takeaways

» Quantum proofs are really powerful!
— That power is what we think makes them not reusable!

— Our proof finds a task (sampling) that should be really hard, and shows that a
reusable proof would be too good to be true.



Takeaways

» Quantum proofs are really powerful!
— That power is what we think makes them not reusable!

— Our proof finds a task (sampling) that should be really hard, and shows that a
reusable proof would be too good to be true.

e Small structural changes can have a huge impact!

— The bosonic compressed oracle came from not requiring that S has exactly
elements, and allowing it to be a multi-set with independent elements instead.

— This removal of structure allowed us to understand queries to the Fourier transtorm
of an oracle way better than we could before!



Takeaways

» Quantum proofs are really powerful!
— That power is what we think makes them not reusable!
— Our proof finds a task (sampling) that should be really hard, and shows that a
reusable proof would be too good to be true.

e Small structural changes can have a huge impact!
— The bosonic compressed oracle came from not requiring that S has exactly
elements, and allowing it to be a multi-set with independent elements instead.
— This removal of structure allowed us to understand queries to the Fourier transtorm
of an oracle way better than we could before!

e Much more work is needed!
— Understanding oracles with structure seems to require an understanding that
structure, seem to be annoying to deal with using general methods.
— To understand other oracles (expander mixing problem, Yamakawa-Zhandry, etc.),
we will need more specific tools, or a big leap in understanding of quantum
algorithmes.
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— Our ideas lie in the intersection of ideas used for quantum money (subset states <
subspace states, Fourier transtform of § <> Fourier transform for group actions).
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Open questions

» Can we find new constructions/security proofs for quantum money?
— Our ideas lie in the intersection of ideas used for quantum money (subset states <
subspace states, Fourier transtform of § <> Fourier transform for group actions).

— We also prove a separation between UnclonableQMA and QMA, feels like we should
be able to say something about quantum money, but what?

» Can we use our oracle/techniques to solve other problems in query complexity?
— BQP/gpoly versus BQP/poly?
— QMA search-to-decision?

» Is there a connection to the Aaronson-Ambainis conjecture?
— Both Liu-Mutreja-Yuen’'24 and Zhandry’24 showed that there is a connection
between QCMA versus QMA and pseudorandomness against quantum algorithms.
— Our proof didn’t say anything about this, but could you use our techniques?



Thanks for listening!



