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The (fully?) quantum future

Imagine a world where...

* Everyone has quantum computers

* People communicate over quantum networks
* People analyze quantum data

What are the problems those people will solve?
What can we say about the complexity of those problems?



Complexity theory today

Complexity classes today (BQP, QMA, MIP*, etc.) have allowed us
to study many quantum computational problems, and have led to
many important insights about quantum advantage, condensed
matter physics, C*-algebras, etc.
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Complexity theory today

But they discuss problems that could also be solved on a classical
computer, with classical input and classical output.
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Complexity theory today

But they discuss problems that could also be solved on a classical
computer, with classical input and classical output.
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What about problems with quantum inputs and outputs?
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Classical versus quantum complexity

Quantum data is inherently different than classical data.

* No cloning: \\.k> -
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Classical versus quantum complexity

Lots of more formal evidence proving quantum complexity must
be inherently different:

* Fully quantum cryptography exists even if P=NP [Kretschmer,
Qian, Sinha, Tal ‘23].

* There are unitaries that do not have efficient implementations,
even given infinite classical computational time [Lombardi, Ma,
Wright “23].

* Being able to determines a Hamiltonian’s ground energy does
not let you make a copy of it's ground state [Irani, Rao, Natarajan,
Nirkhe, Yuen ‘21].
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Summary so far

* In the future, we hope to be solving problems that involve
accepting quantum inputs and returning quantum outputs.

* Traditional complexity theory is geared towards comparing
classical and quantum computers, instead of discussing the
relative hardness of these problems.

* Evidence suggests that these problems are actually inherently
different than traditional problems, and need a new, “fully-
quantum” theory.



Unitary complexity theory

and the Uhlmann transformation problem.

Based on joint work with Yuval Efron, Tony Metger, Luowen Qian, Alex Poremba, and Henry Yuen.



Quantum information basics

* A “register” in this talk is a Hilbert space (i.e. vector space with
an inner product). “n-qubits” means the dimension is 2.

* A “ket” is a normalized vector: [) € R, \/(Y|) = 1.

* A “unitary” is a linear operation on a register that is norm
preserving (i.e. maps unit vectors to unit vectors).

* Two quantum registers compose via the tensor product, so
vectors in register AB are a linear combination of the tensor
products of a vector in A and a tensor product in B.



Motivating example: Uhlmann’s theorem

Say that we know about two bipartite states, |) and |¢), such that
their reduced states on register B is the same.
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Motivating example: Uhlmann’s theorem

Uhimann’s theorem says that there exists a unitary, Uy, 4 that
transforms |Y) to |¢p) while only touching the A register.
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Motivating example: Uhlmann’s theorem

Uhimann’s theorem says that there exists a unitary, Uy, 4 that
transforms |Y) to |¢p) while only touching the A register.

Vv
v

Q?
v
0 — L — P

But how hard is it to actually implement that unitary?
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Implementing Uhlmann’s theorem

In the previous setup, Alice has:

* The A register of |Y)ap.

* Knowledge of what ) and |¢) are.

* A precision € that they must approximate the unitary to.

They should output a quantum register A such that, when paired
with the original register B, should be close to |¢).



Unitary synthesis problems

A unitary synthesis problem is a family of unitary transformations
indexed by a classical instance x: U = (Uy) xefo0,1}*-
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Unitary synthesis problems

A quantum model of computation implements U if given x and any
(potentially entangled) quantum input |y), the model outputs
Ux X id |1/J> X
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Distributional unitary synthesis problems

A distributional unitary synthesis problem is a family of unitary
transformations and a family of states indexed by the same x,

(U = (Ux)xe{o,l}*:LIJ — (ll/)>x)xe{0,1}*)-
X
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Distributional unitary synthesis problems

A quantum model of computation implements (U, V) if given x
and a copy of |y, ), the model outputs U, & id |y,,).
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Unitary complexity classes

A unitary complexity class is a collection of unitary synthesis
problems.




Reductions

A unitary synthesis problem U reduces to another unitary
synthesis problem V if there is a polynomial-time algorithm with
query access to V that implements U.
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The Uhlmann transformation problem

Uhimann = (Uy)xefo,1}* such that x = (C, D) is a pair of polynomial
sized circuits such that |[y) = C|0) and |¢) = D|0), and U, is the
unitary that maps between the two.
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The Uhlmann transformation problem

Uhimann = (Uy)xefo,1}* such that x = (C, D) is a pair of polynomial
sized circuits such that |[y) = C|0) and |¢) = D|0), and U, is the
unitary that maps between the two.

The input is all of the C states: Wypimann = (C10))x=(c,p)e{0,1}*-
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The complexity of Uhlmann

avgUnitarySZK (informal): The unitary complexity class of all
unitary synthesis problems that can be implemented by a
polynomial-time verifier interacting with a prover, such that the
interaction with the honest prover can be simulated.

A somewhat natural extension of QSZK to unitary synthesis
problems.



The complexity of Uhlmann

Theorem (informal): Uhlmann is complete for the distributional
unitary complexity class avgUnitarySZK.




Uhlmann and cryptography

Bit commitments are the cryptographic equivalent of sending a
message in a sealed envelope to a receiver.
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Uhlmann and cryptography

Bit commitments are the cryptographic equivalent of sending a
message in a sealed envelope to a receiver.

A bit commitment has two phases, a commit phase and a reveal
phase.
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Uhlmann and cryptography

A commitment is binding if the sender can not change their
message after they give the sender their commitment.



Uhlmann and cryptography

Theorem (informal): Uhlmann is equivalent to the problem of
breaking the binding property of (statistically hiding) quantum
commitments.




Uhlmann and cryptography

Theorem (informal): Uhlmann is equivalent to the problem of

breaking the binding property of (statistically hiding) quantum
commitments.

ldea: The commitments to O and 1 for statistically hiding
commitments are valid Uhlmann instances.
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Uhlmann and cryptography

Theorem (informal): Uhlmann is equivalent to the problem of
breaking the binding property of (statistically hiding) quantum
commitments.

Corollary (informal);: Combined with BQSY’23, Uhlmann is not in
avgUnitaryBQP if and only if (infinitely often) secure commitments
exist.




Uhlmann and Shannon theory

Informally, the decodable channel problem is the following: Say
that | have a channel N, and | put half of a maximally entangled
state into it. Recover the maximally entangled state with only the
output of the channel.
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Uhlmann and Shannon theory

More formally, uDecodableChannel — (UN)N quantum channel>
Wpecodablechannel = (|EPR,,))ar, where n is the input length of V.



Uhlmann and Shannon theory

Theorem (informal): The decodable channel problem is equivalent
to the Uhlmann transformation problem.




Uhlmann and Shannon theory

Theorem (informal): The decodable channel problem is equivalent
to the Uhlmann transformation problem.

ldea: In one direction, the state before and after the (purification of
the) channel are a valid Uhlmann instance.
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Uhlmann and Shannon theory

|ldea: In the other direction, given a input-output pair for Uhlmann,
have the channel map O and 11to the input and output respectively,
and trace out the B reqgister.
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Solving the decodable channel problem on this instance can be
used to implement the Uhlmann transformation.



Succinct Uhlmann and PSPACE

If we instead allow the instance to be “succinct”, we get a problem
that turns out to be complete for both avgUnitaryPSPACE and
avgUnitaryQIP, thus showing that these two classes are equal!



The unitary synthesis landscape today
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The future of unitary synthesis
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The first direction | want to pitch is studying more unitary
complexity classes and finding complete problems for them.



Populating the zoo: UnitaryQMA?

The first direction | want to pitch is studying more unitary
complexity classes and finding complete problems for them.

| think a natural one is an equivalent of QMA, but it's not so easy
to define it in a reasonable way!



Unitaries with quantum witnesses?

Here’s a first attempt:

Say that a family of unitaries U = (Uy) xefo0,13* is in unitaryQMA if
there a quantum polynomial-time verifier that can implement ‘U
with an additional quantum witness.



Unitaries with quantum witnesses?

Completeness: There is some subspace of withesses that cause
the verifier to implement the correct unitary.

Soundness: If the verifier correctly implements the unitary, the
state must come from the “good witness” subspace.



Unitaries with quantum witnesses?

The definition is quite subtle, as we also need the verifier to
“correctly” implement no instances of a QMA problem: Our verifier
should do something for every input.

Imagine a unitary synthesis problem that is identity if the instance
is in a language, and a sign flip it is not, why is this unitary
synthesis problem in this version of unitaryQMA?



Unitaries with quantum witnesses?

| have some ideas for complete problems, but | haven't figured out
how to show that they are complete.

| also have no idea for how to relate this class to other sub-fields
of quantum computer science!



Efficiently verifiable unitaries?

Maybe another way to define unitaryQMA is that a unitary is in
unitaryQMA if there is a quantum polynomial-time verifier that gets
a pair of states in tensor product, |Y) Q |¢p), and should accept if

and only if |p) = U, |y).



Efficiently verifiable unitaries?

This definition seems more natural for some cryptography
applications, like one-way state generators.

High level: For a one-way state generator, it should be hard to
|Y, ) to a key k that is accepted by a verifier that takes a copy of
the state and the proposed key. The verifier will play the role of
the unitaryQMA verifier.



Efficiently verifiable unitaries?

However, | do not know of a “good” complete problem for this
class (i.e. something that is not complete by definition).



Motivating quantum complexity

Another big open problem is: Can you find a pair of unitary
complexity classes (or a problem and complexity class) that have a
“different” relationship than their classical counterparts?



Motivating quantum complexity

One approach: In some restricted cases, commuting Hamiltonians
have been shown to be classical (i.e. a NP verifier can check the
ground energy), but the proofs are non-constructive (i.e. the
witness can not be used to construct the ground state).



Motivating quantum complexity

Can you show that the ground states of commuting Hamiltonians
are stateQMA complete?

Can you show that mapping between ground-spaces of
commuting Hamiltonians (for some reasonable definition of this) is
unitaryQMA complete?

This would imply solving the decision version of some problems
can remove the quantum-ness from the problem!



Thanks for listening!



